Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
基本信息
- 批准号:1940168
- 负责人:
- 金额:$ 35.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent explosion in worldwide data together with the end of Moore's Law and the near-term limits of silicon-based data storage being reached are driving an urgent need for alternative forms of computing and data storage/retrieval platforms. In particular, exabyte-scale datasets are increasingly being generated by the biological sciences and engineering disciplines including genomics, transcriptomics, proteomics, metabolomics, and high-resolution imaging, as well as disparate other scientific fields including climate science, ecology, astronomy, oceanography, sociology, and meteorology, amongst others. In this data revolution, the continuously increasing size of these datasets requires a concomitant increase in available computational power to store, process, and harness them, which is driving a need for revolutionary new, alternative substrates for, and forms of, computing and data storage. Unlike traditional data storage and computing materials such as silicon, the human brain offers a remarkable ability to sense, store, retrieve, and compute information in a manner that is unrivaled by any human-made material. In this research project, analogous modes of information sensing, data storage, retrieval, and computation will be explored in non-traditional computing molecular systems and materials. The over-arching goal of the research is to discover revolutionary new modes of data storage/retrieval, sensing, and computation that rival conventional silicon-based technology, for deployment to benefit society broadly across all domains of data science. Graduate students and postdocs across five institutions will be trained and mentored in a highly interdisciplinary manner to attain this goal and prepare the next-generation of data scientists, chemists, physicists, and engineers to harness the ongoing data revolution. The research will be disseminated to a broad community through news outlets and integration of high school student internships in participating research laboratories. Large-scale datasets from spatial-temporal calcium imaging of the mouse brain will be recorded into DNA-based, nanoparticle-based, and phononic 2D and 3D soft and hard materials. Continuous spatial-temporal data will first be transformed into discrete data for mapping onto DNA-conjugated fluorophore networks, dynamic barcoded nanoparticle networks, and phononic 2D and 3D materials. Sensing, computation, and data storage/retrieval will be demonstrated as proofs-of-principle in exploiting the chemical properties of molecular networks and materials to recover the encoded neuronal datasets and their sensing and computing processes. Success with any of these three prototypical materials would revolutionize the ability to encode arbitrarily complex, large-scale datasets into complex molecular systems, with the potential to scale across diverse data domains and materials frameworks. The investigators' Autonomous Computing Materials framework will thereby enable the encoding of arbitrary "big data" sets into diverse materials for data storage, sensing, and computing. This project maximizes opportunities for disruptive new computing and data science concepts to emerge from a multi-disciplinary, collaborative team spanning data science, neuroscience, materials science, chemistry, physics, and biological engineering. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Chemistry within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近全球数据的爆炸性增长、摩尔定律的终结以及硅基数据存储的近期极限正在推动对替代形式的计算和数据存储/检索平台的迫切需求。特别是,艾字节尺度的数据集越来越多地由生物科学和工程学科产生,包括基因组学、转录组学、蛋白质组学、代谢组学和高分辨率成像,以及气候科学、生态学、天文学、海洋学、社会学和气象学等不同的其他科学领域。在这场数据革命中,这些数据集的大小不断增加,需要随之而来的是存储、处理和利用它们的可用计算能力的增加,这推动了对用于计算和数据存储的革命性新的替代基板和形式的需求。与传统的数据存储和计算材料(如硅)不同,人脑具有非凡的能力,能够以任何人造材料无法比拟的方式感知、存储、检索和计算信息。在这项研究项目中,将探索非传统计算分子系统和材料中的信息感知、数据存储、检索和计算的模拟模式。这项研究的总体目标是发现革命性的新数据存储/检索、传感和计算模式,可与传统的基于硅的技术相媲美,以便在数据科学的所有领域广泛惠及社会。五个机构的研究生和博士后将接受高度跨学科的培训和指导,以实现这一目标,并为利用正在进行的数据革命培养下一代数据科学家、化学家、物理学家和工程师。这项研究将通过新闻媒体和参与研究实验室的高中生实习活动向广大社区传播。来自小鼠大脑的时空钙成像的大规模数据集将被记录成基于DNA的、基于纳米颗粒的和声学的2D和3D软硬材料。连续的时空数据将首先转换为离散数据,用于映射到DNA共轭荧光分子网络、动态条形码纳米粒子网络以及声子2D和3D材料上。感知、计算和数据存储/检索将作为利用分子网络和材料的化学性质来恢复编码的神经元数据集及其感知和计算过程的原则证明。这三种原型材料中的任何一种的成功都将彻底改变将任意复杂的大规模数据集编码成复杂分子系统的能力,并有可能跨越不同的数据领域和材料框架。因此,研究人员的自主计算材料框架将使任意的“大数据”集能够编码成各种材料,用于数据存储、传感和计算。该项目最大限度地增加了颠覆性新计算和数据科学概念出现的机会,该团队涵盖数据科学、神经科学、材料科学、化学、物理和生物工程等多学科协作团队。该项目是国家科学基金会利用数据革命(HDR)大创意活动的一部分,由HDR和NSF数学和物理科学局内的化学部共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Latent Structures for Cross Action Phrase Relations in Wet Lab Protocols
- DOI:10.18653/v1/2021.acl-long.525
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chaitanya Kulkarni;Jany Chan;E. Fosler-Lussier;R. Machiraju
- 通讯作者:Chaitanya Kulkarni;Jany Chan;E. Fosler-Lussier;R. Machiraju
Autonomous Computing Materials
- DOI:10.1021/acsnano.0c09556
- 发表时间:2021-02-26
- 期刊:
- 影响因子:17.1
- 作者:Bathe, Mark;Hernandez, Rigoberto;Neogi, Sanghamitra
- 通讯作者:Neogi, Sanghamitra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raghu Machiraju其他文献
Raghu Machiraju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raghu Machiraju', 18)}}的其他基金
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
- 批准号:
1761969 - 财政年份:2018
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
SCC-Planning: Using Innovations in Big Data and Technology to Address the High Rate of Infant Mortality in Greater Columbus Ohio
SCC-Planning:利用大数据和技术创新解决俄亥俄州大哥伦布市婴儿死亡率高的问题
- 批准号:
1737560 - 财政年份:2017
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
- 批准号:
1262469 - 财政年份:2014
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
- 批准号:
1065025 - 财政年份:2011
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
SOFTWARE: Framework for Mining Large and Complex Scientific Datasets
软件:挖掘大型复杂科学数据集的框架
- 批准号:
0234273 - 财政年份:2003
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
ITR/NGS: A Framework for Discovery, Exploration and Analysis of Evolutionary Simulation Data (DEAS)
ITR/NGS:进化模拟数据发现、探索和分析的框架 (DEAS)
- 批准号:
0326386 - 财政年份:2003
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
0196242 - 财政年份:2000
- 资助金额:
$ 35.66万 - 项目类别:
Continuing grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
- 批准号:
9734483 - 财政年份:1998
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
- 批准号:
2208489 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321532 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312833 - 财政年份:2023
- 资助金额:
$ 35.66万 - 项目类别:
Standard Grant