BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field

BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化

基本信息

  • 批准号:
    1262469
  • 负责人:
  • 金额:
    $ 41.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Proteins are the molecular machines that are responsible for a vast array of functions that are necessary for life. Understanding how they work is critical to both a better scientific understanding of the fundamental processes of life, and to modifying or improving their function. Despite the fact that proteins are physically 3-dimensional structures of cooperating parts, the current state of the art for representing and studying proteins uses a description that is simply a sequential list of the parts used in their assembly. This sequential-list style of description has biased the development of tools for protein analysis to accentuate the sequential properties of these molecules, and to ignore the fact that the parts must work together in unison for the protein to function. This project will adapt a recently-developed statistical technique, the Conditional Random Field (CRF), that can quantitatively represent densely-connected networks of features, and a recently-developed visualization tool that enables interactive exploration of these networks, for the task of describing proteins. Structurally, Conditional Random Fields appear to recapitulate the process by which evolution has selected for parts that cooperate in proteins, and protein descriptions based on CRFs will be able to predict whether a change to a protein - a mutation - would have been tolerated by evolution, or selected against as non-functional. This information will aid in predicting the effect of a mutation, or multiple mutations to a protein, using much more of the available information, than is currently utilized by state-of-the-art tools.This work will broadly impact the study of proteins, improving a range of activities from basic scientific studies of function, to endeavors in protein engineering. In addition, the "change in protein sequence to change in protein function" problem is a "model organism" for many other types of biological and non-biological systems where rich interactions between parts of the system demand a sophisticated statistical approach. To-date, in most of these fields, models that are similarly limited to those currently used in proteins are the de-facto standard. Developing the tools necessary for applying CRFs to protein data, and methods of establishing testable ground-truth in this system, will enhance the application of CRFs to many other domains where they may provide a significant advantage over current methods. The products of this project will be made freely available to the research community as online tools, and the methods will be incorporated in coursework, first in the Biophysics Graduate Program at The Ohio State University, and as the teachable component matures, made available as lesson-plan material appropriate for both primary and secondary education. By developing a tool that makes interdependencies between features visually explorable and modifications of these dependencies quantifiably predictable, we will promote more thorough consideration of the true complexity of data and systems in many domains.
蛋白质是负责生命所必需的大量功能的分子机器。 了解它们的工作方式对于更好地科学理解生命的基本过程以及修改或改善它们的功能至关重要。 尽管事实上蛋白质是协作部分的物理三维结构,但用于表示和研究蛋白质的现有技术使用的描述仅仅是在其组装中使用的部分的顺序列表。 这种顺序列表式的描述方式使蛋白质分析工具的发展偏向于强调这些分子的顺序特性,而忽视了蛋白质功能的各个部分必须协调一致地工作这一事实。 该项目将采用最近开发的统计技术,条件随机场(CRF),可以定量表示密集连接的特征网络,以及最近开发的可视化工具,可以交互式探索这些网络,用于描述蛋白质的任务。 从结构上讲,条件随机场似乎概括了进化选择蛋白质中合作部分的过程,基于CRF的蛋白质描述将能够预测蛋白质的变化-突变-是否会被进化所容忍,或者被选择为非功能性的。 这些信息将有助于预测一个突变或多个突变对蛋白质的影响,使用更多的可用信息,而不是目前最先进的工具。这项工作将广泛影响蛋白质的研究,改善从功能的基础科学研究到蛋白质工程的一系列活动。此外,“蛋白质序列改变蛋白质功能改变”问题是许多其他类型的生物和非生物系统的“模型生物”,其中系统各部分之间的丰富相互作用需要复杂的统计方法。 迄今为止,在大多数这些领域中,类似地限于目前在蛋白质中使用的模型是事实上的标准。 开发将CRF应用于蛋白质数据所需的工具,以及在该系统中建立可测试的地面实况的方法,将增强CRF在许多其他领域的应用,在这些领域中,CRF可能比当前方法具有显着的优势。 该项目的产品将作为在线工具免费提供给研究社区,该方法将被纳入课程,首先是在俄亥俄州州立大学的生物物理学研究生课程中,随着可教部分的成熟,可作为适合小学和中学教育的课程计划材料。 通过开发一种工具,使功能之间的相互依赖性变得可视觉探索,并且这些依赖性的修改可以量化预测,我们将促进对许多领域中数据和系统的真正复杂性进行更彻底的考虑。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghu Machiraju其他文献

Raghu Machiraju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raghu Machiraju', 18)}}的其他基金

Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
  • 批准号:
    1940168
  • 财政年份:
    2019
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
  • 批准号:
    1761969
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
SCC-Planning: Using Innovations in Big Data and Technology to Address the High Rate of Infant Mortality in Greater Columbus Ohio
SCC-Planning:利用大数据和技术创新解决俄亥俄州大哥伦布市婴儿死亡率高的问题
  • 批准号:
    1737560
  • 财政年份:
    2017
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
  • 批准号:
    1065025
  • 财政年份:
    2011
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
SOFTWARE: Framework for Mining Large and Complex Scientific Datasets
软件:挖掘大型复杂科学数据集的框架
  • 批准号:
    0234273
  • 财政年份:
    2003
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
ITR/NGS: A Framework for Discovery, Exploration and Analysis of Evolutionary Simulation Data (DEAS)
ITR/NGS:进化模拟数据发现、探索和分析的框架 (DEAS)
  • 批准号:
    0326386
  • 财政年份:
    2003
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
  • 批准号:
    0196242
  • 财政年份:
    2000
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
  • 批准号:
    9734483
  • 财政年份:
    1998
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant

相似国自然基金

ABI3BP通过优化糖代谢改善阿尔茨海默症的研究
  • 批准号:
    JCZRQN202500293
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ABI4的氧-糖基化修饰负调控ABA信号的 分子机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
  • 批准号:
    32370331
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
ABI3BP参与内皮祖细胞功能调控在血管衰老中的作用及机制
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ABI3BP 差异化调节中膜 SMCs 和血管外膜 Scal+祖细胞功能影响内膜新生的作用及机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ABI3BP差异化调节中膜SMCs和血管外膜Sca-1+祖细胞功能影响内膜新生的作用及机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
  • 批准号:
    31900270
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
自噬蛋白ATG8I与ABI5转录因子相互作用调控ABA信号转导及种子萌发的分子机理
  • 批准号:
    31870258
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
  • 批准号:
    81800415
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
  • 批准号:
    31872656
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
CAREER: ABI-Innovation: CiliaWeb: Integrated platform for foundational and reproducible ciliary beat pattern analysis
职业:ABI-创新:CiliaWeb:用于基础和可重复纤毛跳动模式分析的集成平台
  • 批准号:
    1845915
  • 财政年份:
    2019
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model -based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759708
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
ABI INNOVATION: Physical Bioinformatics Tools for Measuring Translation Rates from Next-Generation Sequencing Data
ABI 创新:用于测量下一代测序数据翻译率的物理生物信息学工具
  • 批准号:
    1759860
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Automated Prioritization and Design of Experiments to Validate and Improve Mathematical Models of Molecular Regulatory Systems
合作研究:ABI 创新:自动优先排序和实验设计,以验证和改进分子调控系统的数学模型
  • 批准号:
    1759858
  • 财政年份:
    2018
  • 资助金额:
    $ 41.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了