III: Medium: Scalable and Secure Database as a Service

III:中等:可扩展且安全的数据库即服务

基本信息

  • 批准号:
    1065219
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

The CirrusDB project seeks to address several key challenges that arise when building a "database as a service". The goal of such a service is to provide a SQL interface to many applications, storing data that today might be spread across hundreds or thousands of separate database management systems. This is attractive because the costs incurred by individual users in the form of software licensing, hardware, management, and energy can be substantially lowered because it will be possible to multiplex many different databases onto a smaller footprint. Moreover, the costs can be made proportional to actual usage, saving significant up-front investments by application developers. The intellectual merit of CirrusDB relates to three key challenges in this area:1) Multi-tenancy, in which the resource use of a complex set of database workloads are monitored and the databases are consolidated on to a minimum number of physical machines while ensuring performance isolation and live migration with no downtime. Unlike existing work on large-scale multi-tenancy, which has focused on co-locating tenants with similar schemas, CirrusDB attempts to co-locate tenants which have resource utilization profiles that will not exceed the capacity of the machine on which they are hosted.2) Scalability in which the responsibility for query processing (and the corresponding data) is partitioned amongst multiple nodes in the service to achieve high throughput, using a novel graph partitioning strategy.3) In which the DBaaS infrastructure executes SQL queries issued by applications over encrypted data, enabling complete SQL processing over fully private data. The key idea is to use the notion of "adjustable security" by encrypting the data in layers in a way that allows not just equality checks but also range queries, sorting operations, and joins to be executed efficiently.CirrusDB will have broad impact in that it will result in database solutions that will a enable large, multi-node database service to be deployed both on a public cloud as well as in private data centers, providing multi-tenancy, scale-out using automatic partitioning, and privacy for SQL query execution. This will result in significantly lower administrative and capital costs required to run large-scale databases. CirrusDB will also reduce the barrier to entry for applications that use databases, because it will not be necessary to have in-house database expertise even when one needs high transactional performance.For further information see the project web site at the URL: http://db.csail.mit.edu/cirrusdb/
CirrusDB项目旨在解决构建“数据库即服务”时出现的几个关键挑战。这种服务的目标是为许多应用程序提供SQL接口,存储今天可能分布在数百或数千个独立数据库管理系统中的数据。 这是有吸引力的,因为单个用户在软件许可证、硬件、管理和能源方面的成本可以大大降低,因为它可以将许多不同的数据库复用到更小的占地面积上。此外,成本可以与实际使用量成比例,从而节省应用程序开发人员的大量前期投资。 CirrusDB的智力优势与该领域的三个关键挑战有关:1)多租户,其中监控一组复杂的数据库工作负载的资源使用,并将数据库整合到最少数量的物理机器上,同时确保性能隔离和实时迁移而不会停机。 与大规模多租户的现有工作不同,该工作集中在共同定位具有类似模式的租户,CirrusDB尝试共同定位具有资源利用率配置文件的租户,这些配置文件不会超过它们所占用的机器的容量。(以及相应的数据)在服务中的多个节点之间被划分以实现高吞吐量,3)其中DBaaS基础架构执行由应用程序对加密数据发出的SQL查询,从而实现对完全私有数据的完整SQL处理。 CirrusDB的核心思想是使用“可调安全性”的概念,通过分层加密数据,不仅允许相等性检查,还允许有效执行范围查询,排序操作和连接。CirrusDB将产生广泛的影响,因为它将产生数据库解决方案,使大型多节点数据库服务能够部署在公共云和私有数据中心,为SQL查询执行提供多租户、使用自动分区的横向扩展和隐私。 这将大大降低运行大型数据库所需的行政和资本费用。 CirrusDB还将降低使用数据库的应用程序的进入门槛,因为即使需要高事务性能,也不需要内部数据库专业知识。有关更多信息,请参阅项目网站,网址为:http://db.csail.mit.edu/cirrusdb/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Madden其他文献

MEDLINE/ PubMed
MEDLINE/PubMed
  • DOI:
    10.1007/978-0-387-39940-9_3039
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Cornelia Caragea;V. Honavar;P. Boncz;P. Larson;S. Dietrich;Gonzalo Navarro;Bhavani Thuraisingham;Yan Luo;Ouri E. Wolfson;S. Beitzel;Eric C. Jensen;Ophir Frieder;Christian S. Jensen;N. Tradisauskas;Ethan V. Munson;A. Wun;K. Goda;Stephen E. Fienberg;Jiashun Jin;Guimei Liu;Nick Craswell;T. Pedersen;Cesare Pautasso;M. Moro;S. Manegold;B. Carminati;Marina Blanton;Sara Bouchenak;Noël de Palma;Wei Tang;Christoph Quix;M. Jeusfeld;R. K. Pon;David J. Buttler;W. Meng;P. Zezula;Michal Batko;Vlastislav Dohnal;J. Domingo;Denilson Barbosa;Ioana Manolescu;Jeffrey Xu Yu;Emmanuel Cecchet;Vivien Quéma;Xifeng Yan;G. Santucci;D. Zeinalipour;Panos K. Chrysanthis;Amol Deshpande;Carlos Guestrin;Samuel Madden;Carson Kai;R. H. Güting;Amarnath Gupta;Heng Tao Shen;G. Weikum;Ramesh Jain;Jeffrey Xu Yu;Paolo Ciaccia;K. Candan;M. Sapino;C. Meghini;F. Sebastiani;U. Straccia;F. Nack;V. S. Subrahmanian;Maria Vanina Martinez;D. Reforgiato;T. Westerveld;M. Sebillo;G. Vitiello;Maria De Marsico;K. Voruganti;C. Parent;S. Spaccapietra;Christelle Vangenot;Esteban Zimányi;Prasan Roy;S. Sudarshan;E. Puppo;Peer Kröger;Matthias Renz;H. Schuldt;Solmaz Kolahi;A. Unwin;W. Cellary
  • 通讯作者:
    W. Cellary
Cabernet: A Content Delivery Network for Moving Vehicles
Cabernet:移动车辆的内容交付网络
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jakob Eriksson;H. Balakrishnan;Samuel Madden
  • 通讯作者:
    Samuel Madden
Cackle: Analytical Workload Cost and Performance Stability With Elastic Pools
Cackle:使用弹性池分析工作负载成本和性能稳定性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Perron;Raul Castro Fernandez;David DeWitt;Michael Cafarella;Samuel Madden
  • 通讯作者:
    Samuel Madden
Performant almost-latch-free data structures using epoch protection in more depth
更深入地使用纪元保护的高性能几乎无锁存的数据结构
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyu Li;Badrish Chandramouli;Samuel Madden
  • 通讯作者:
    Samuel Madden
Research contributions of Mike Stonebraker: an overview
  • DOI:
    10.1145/3226595.3226612
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Madden
  • 通讯作者:
    Samuel Madden

Samuel Madden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Madden', 18)}}的其他基金

Collaborative Research: Elements: A Self-tuning Anomaly Detection Service
合作研究:Elements:自调整异常检测服务
  • 批准号:
    2103799
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Massively Parallel Data Analytics on Heterogeneous Architectures
III:中:异构架构上的大规模并行数据分析
  • 批准号:
    1763434
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
BD Spokes: SPOKE: NORTHEAST: Collaborative: A Licensing Model and Ecosystem for Data Sharing
BD Spokes:SPOKE:NORTHEAST:协作:数据共享的许可模型和生态系统
  • 批准号:
    1636766
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: DataHub - A Collaborative Dataset Management Platform for Data Science
III:媒介:协作研究:DataHub - 数据科学协作数据集管理平台
  • 批准号:
    1513443
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
ACM SIGMOD 2012 Student Programming Contest: A Multidimensional Indexing System
ACM SIGMOD 2012 学生编程竞赛:多维索引系统
  • 批准号:
    1235666
  • 财政年份:
    2012
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SIGMOD 2011 Programming Contest
SIGMOD 2011 编程大赛
  • 批准号:
    1129526
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Large: Collaborative Research: SciDB - An Array Oriented Data Management System for Massive Scale Scientific Data
III:大型:协作研究:SciDB - 用于大规模科学数据的面向数组的数据管理系统
  • 批准号:
    1111371
  • 财政年份:
    2011
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
2010 SIGMOD Programming Contest
2010年SIGMOD编程大赛
  • 批准号:
    1037986
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comparative Study of Approaches to Cluster-Based Large Scale Data Analysis
协作研究:基于集群的大规模数据分析方法的比较研究
  • 批准号:
    0844013
  • 财政年份:
    2009
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
2009 SIGMOD Programming Contest
2009年SIGMOD编程大赛
  • 批准号:
    0848727
  • 财政年份:
    2008
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
  • 批准号:
    2312561
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212512
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212511
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
  • 批准号:
    2106837
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955285
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955189
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955851
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了