III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data

III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析

基本信息

  • 批准号:
    2106837
  • 负责人:
  • 金额:
    $ 117.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Cancer is a disease that is driven by mutations in the genome of an individual. These mutations include single nucleotide variants, or SNVs, which alter a single nucleotide in the genome. They also include copy number aberrations, or CNAs, which result in the deletion or amplification of stretches of DNA in the genome. Detecting these mutations in genomic data obtained from cancer patients allows us to better understand and develop treatments for cancer. This project aims to develop tools for accomplishing this detection task using large amounts of genomic sequences obtained from many individual cells. The project by its nature is interdisciplinary and will help train students at the interface of multiple disciplines as well as provide software for the community at large. The project will result in scalable methods for SNV and CNA detection from single-cell DNA sequencing data. This will be accomplished through four thrusts. In thrust 1, the project will develop methods for simultaneous inference of SNVs and mutation trees. Here, models beyond the infinite-sites assumption will be included. In thrust 2, the project will produce new models and inference methods for genome evolution in the presence of CNAs. In thrust 3, the project will devise novel divide-and-conquer techniques to scale the methods of thrusts 1 and 2 to whole-genome data and data obtained from thousands of cells. In thrust 4, all methods will be evaluated on synthetic and biological data, and open-source implementation will be released publicly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症是一种由个体基因组突变驱动的疾病。这些突变包括单核苷酸变体或SNV,其改变基因组中的单个核苷酸。它们还包括拷贝数畸变或CNA,其导致基因组中DNA片段的缺失或扩增。在从癌症患者获得的基因组数据中检测这些突变使我们能够更好地了解和开发癌症治疗方法。该项目旨在开发使用从许多单个细胞获得的大量基因组序列来完成这一检测任务的工具。该项目的性质是跨学科的,将有助于培养学生在多个学科的接口,以及为整个社区提供软件。该项目将导致从单细胞DNA测序数据中检测SNV和CNA的可扩展方法。这将通过四个方面来实现。在第一阶段,该项目将开发SNV和突变树的同时推理方法。这里,将包括超越无限站点假设的模型。在第二阶段,该项目将为CNA存在下的基因组进化产生新的模型和推理方法。在第三阶段,该项目将设计新的分而治之的技术,将第一阶段和第二阶段的方法扩展到全基因组数据和从数千个细胞中获得的数据。在推力4中,所有的方法都将在合成和生物数据上进行评估,开源的实施将公开发布。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MoTERNN: Classifying the Mode of Cancer Evolution Using Recursive Neural Networks
  • DOI:
    10.1101/2022.08.21.504710
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Edrisi;Huw A. Ogilvie;Meng Li;L. Nakhleh
  • 通讯作者:
    M. Edrisi;Huw A. Ogilvie;Meng Li;L. Nakhleh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luay Nakhleh其他文献

A survey of computational approaches for characterizing microbial interactions in microbial mats
  • DOI:
    10.1186/s13059-025-03634-2
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen
  • 通讯作者:
    Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
  • DOI:
    10.1186/s13059-019-1692-5
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
  • DOI:
    10.1186/s13059-017-1370-4
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh

Luay Nakhleh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luay Nakhleh', 18)}}的其他基金

DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
  • 批准号:
    2153704
  • 财政年份:
    2022
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
  • 批准号:
    2030604
  • 财政年份:
    2020
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
  • 批准号:
    1916093
  • 财政年份:
    2019
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
  • 批准号:
    1812822
  • 财政年份:
    2018
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
  • 批准号:
    1800723
  • 财政年份:
    2018
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
  • 批准号:
    1514177
  • 财政年份:
    2015
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
AF: Medium: Algorithmic Foundations for Phylogenetic Networks
AF:中:系统发育网络的算法基础
  • 批准号:
    1302179
  • 财政年份:
    2013
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data
ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法
  • 批准号:
    1062463
  • 财政年份:
    2011
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
  • 批准号:
    0845336
  • 财政年份:
    2009
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
  • 批准号:
    0829276
  • 财政年份:
    2008
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
  • 批准号:
    2312561
  • 财政年份:
    2023
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212512
  • 财政年份:
    2022
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212511
  • 财政年份:
    2022
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955285
  • 财政年份:
    2020
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955189
  • 财政年份:
    2020
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955851
  • 财政年份:
    2020
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Standard Grant
III: Medium: Scalable Machine Learning for Genome-Wide Association Analyses
III:媒介:用于全基因组关联分析的可扩展机器学习
  • 批准号:
    1705121
  • 财政年份:
    2017
  • 资助金额:
    $ 117.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了