Drag reduction and the nonlinear dynamics of Newtonian and viscoelastic turbulence

减阻以及牛顿和粘弹性湍流的非线性动力学

基本信息

  • 批准号:
    1066223
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

Graham1066223At low speed, flow in a pipe or over an aircraft is smooth and steady. At higher speeds, flow becomes turbulent -- the smooth motion gives way to fluctuating eddies that sap the fluid's energy and make it more difficult to pump the fluid through the tube or to propel the aircraft through the air. For flowing liquids, adding a small amount of very large polymer molecules can dramatically affect the turbulent eddies, reducing their deleterious effects on energy efficiency. This phenomenon is used, for example, in the Alaska pipeline, but it is not well-understood, and no comparable technology exists to reduce turbulent energy consumption in flows of gases, in which polymers cannot be dissolved. Recent work in the Principal Investigator's group has demonstrated that many of the features of turbulent flow in polymer solutions can also arise in turbulent flow of simple fluids, including gases, potentially leading to new approaches to improved energy efficiency in a wide range of flow processes. The discovery hinges on the identification of two kinds of turbulence, "active" turbulence, which dominates flows without additives and leads to substantial energy consumption, and "hibernating" turbulence, which drains much less energy from the fluid. Hibernating turbulence is prevalent at high levels of additives, but still occurs occasionally in their absence.The objective of the proposed work is to more fully characterize the spatial and temporal behavior of turbulent flows in light of the observations described above, and to test some specific hypotheses about the structure of turbulent flow at high levels of drag reduction. To do this, simulations of turbulent flows will be performed and a number of new approaches to data analysis will be developed and implemented. Additionally, a second thrust will, for the first time, systematically study the "edge" dynamics of flows that are just barely turbulent and thus have very low drag. All these studies will take advantage of new results in the analysis of mathematical models for flow of polymer solutions, for purposes of both computation and data analysis. The intellectual merit of this work has several dimensions. The first is very fundamental: drag reduction by additives is a key physical phenomenon at intersection between the fields of turbulence and complex fluids, so gaining a firm understanding of this phenomenon would represent a significant fundamental advance. The second is more far-reaching: One of the long-stated motivations for research into the mechanism of turbulent drag reduction by polymers is the potential that understanding this situation can shed light on general mechanisms for turbulent drag reduction that would apply to situations where polymer addition is impractical or impossible (e.g. in a gas flow.) The discovery that even in Newtonian flow there exist low drag periods very much like those found at high levels of drag reduction naturally suggests that new strategies based on this discovery might be found that can reduce drag and thereby increase energy efficiency in a wide variety of processes involving flow. Broader impacts arising from this work include: (1) Involvement of undergraduate students in a project involving practical issues of implementing drag reducing fluids in a large scale flow system -- the UW-Madison chilled water cooling system; (2) Education of graduate students with a unique multidisciplinary perspective, combining molecular and continuum computational methods with concepts of polymer and fluid dynamics and dynamical systems theory; (3)Foundations for turbulence control: if we understand the structure of turbulence and how polymers affect this structure, perhaps we can mimic those effects with deformable boundaries, electric/magnetic fields or other modifications. More generally, rigorous development of energy-saving flow control strategies of all kinds will be enabled by a firm understanding of turbulence.
Graham1066223低速时,管道中或飞机上的流动平稳且稳定。当速度较高时,流动会变得湍流——平滑的运动被波动的涡流所取代,涡流会消耗流体的能量,并使通过管道泵送流体或在空气中推动飞机变得更加困难。 对于流动液体,添加少量非常大的聚合物分子可以显着影响湍流涡流,减少其对能源效率的有害影响。例如,这种现象在阿拉斯加管道中得到了应用,但人们对它的理解还不够深入,并且不存在类似的技术来减少气流中的湍流能量消耗,因为聚合物不能溶解在气流中。首席研究员小组最近的工作表明,聚合物溶液中湍流的许多特征也可能出现在包括气体在内的简单流体的湍流中,这可能会导致在各种流动过程中提高能源效率的新方法。这一发现取决于对两种湍流的识别:“主动”湍流,它在没有添加剂的情况下主导流动并导致大量的能量消耗;以及“冬眠”湍流,它从流体中消耗的能量少得多。冬眠湍流在高水平的添加剂中很普遍,但在没有添加剂的情况下仍然偶尔发生。拟议工作的目的是根据上述观察结果更全面地表征湍流的空间和时间行为,并测试有关高减阻水平下湍流结构的一些具体假设。为此,将进行湍流模拟,并开发和实施许多新的数据分析方法。此外,第二个推力将首次系统地研究几乎没有湍流且阻力非常低的流动的“边缘”动力学。所有这些研究都将利用聚合物溶液流动数学模型分析的新结果,用于计算和数据分析。 这项工作的智力价值有几个方面。第一个是非常基础的:添加剂减阻是湍流场和复杂流体领域交叉点的关键物理现象,因此对这种现象的深入理解将代表着重大的根本性进步。第二个影响更为深远:研究聚合物减少湍流减阻机制的长期动机之一是,了解这种情况可以揭示湍流减阻的一般机制,该机制适用于聚合物添加不切实际或不可能的情况(例如在气流中)。这一发现表明,即使在牛顿流动中,也存在与高水平减阻时发现的低阻力周期非常相似的低阻力周期,这自然表明新的 基于这一发现的策略可能会被发现可以减少阻力,从而提高涉及流动的各种过程的能源效率。这项工作产生的更广泛的影响包括:(1)本科生参与了一个涉及在大型流动系统——威斯康辛大学麦迪逊分校冷冻水冷却系统中实施减阻液的实际问题的项目; (2)以独特的多学科视角,将分子和连续介质计算方法与聚合物、流体动力学和动力系统理论的概念相结合,对研究生进行教育; (3)湍流控制的基础:如果我们了解湍流的结构以及聚合物如何影响该结构,也许我们可以通过可变形边界、电场/磁场或其他修改来模拟这些效应。更一般地说,通过对湍流的深刻理解,将能够严格开发各种节能流量控制策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Graham其他文献

Poster 74 Non-Infarcted Brain Volume Predicts CI Therapy Outcomes in Chronic Stroke
  • DOI:
    10.1016/j.apmr.2011.07.099
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tyler Rickards;Victor Mark;Edward Taub;Chelsey Sterling;Gitendra Uswatte;Ameen Barghi;Michael Graham
  • 通讯作者:
    Michael Graham
FDI, industrialisation and environmental quality in SSA—the role of institutional quality towards environmental sustainability
外国直接投资、工业化与撒哈拉以南非洲的环境质量——制度质量对环境可持续性的作用
  • DOI:
    10.1057/s41599-024-04000-6
  • 发表时间:
    2024-11-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    John Abdulai Jinapor;Joshua Yindenaba Abor;Michael Graham
  • 通讯作者:
    Michael Graham
Poster 75 Corpus Callosum Size Predicts Paretic Arm Spontaneous Use and Maximal Movement Ability in Chronic Stroke
  • DOI:
    10.1016/j.apmr.2011.07.100
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chelsey Sterling;Victor Mark;Edward Taub;Tyler Rickards;Gitendra Uswatte;Ameen Barghi;Michael Graham;Angela Chandler
  • 通讯作者:
    Angela Chandler
The Discourse Function of Koine Greek Verb Forms in Narrative: Testing Current Proposals in the Book of Judith
叙事中通用希腊语动词形式的话语功能:检验《朱迪思之书》中当前的建议
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Graham
  • 通讯作者:
    Michael Graham
16: Transplantation Otcome of Plasma Depleted Cord Blood Unit and the Effect of Post-Thaw Washing
  • DOI:
    10.1016/j.bbmt.2006.08.018
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Chow;Auayporn Nademanee;Joseph Rosenthal;Chatchada Karanes;Tang-Her Jaing;Michael Graham;Brian Wang;David Gjertson;Lee Lee Chan;Gretchen Eames;Ah Moy Tan;Poh-Lin Tan;Hai-Peng Lin;Patrick Tan;Lawrence Petz
  • 通讯作者:
    Lawrence Petz

Michael Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Graham', 18)}}的其他基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microcirculatory blood flow in sickle cell disease
镰状细胞病中的微循环血流
  • 批准号:
    2042221
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Rheology and fluid dynamics of surfactant solutions with flow-induced structure
具有流动诱导结构的表面活性剂溶液的流变学和流体动力学
  • 批准号:
    1803090
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dynamics in thin sheets in flow: flipping, folding, bending and buckling
流动中薄板的动力学:翻转、折叠、弯曲和屈曲
  • 批准号:
    1604767
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
UNS: Origins of maximum drag reduction in viscoelastic turbulence
UNS:粘弹性湍流中最大减阻的起源
  • 批准号:
    1510291
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cell distribution and segregation phenomena in blood flow: biomechanical aspects and impacts
血流中的细胞分布和分离现象:生物力学方面和影响
  • 批准号:
    1436082
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dynamics of Multiflagellar Swimming in Bacteria
细菌中多鞭毛游动的动力学
  • 批准号:
    1304942
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Transport of cells and drug delivery particles in blood flow
血流中细胞和药物输送颗粒的运输
  • 批准号:
    1132579
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference support: XVIth International Workshop on Numerical Methods for Non-Newtonian Flows, Northampton, MA
会议支持:第十六届非牛顿流数值方法国际研讨会,马萨诸塞州北安普顿
  • 批准号:
    1018988
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Full Field Measurement of Cutting Tool Surface Temperatures
合作研究:切削刀具表面温度的全场测量
  • 批准号:
    1000764
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
某些非线性椭圆偏微分方程解的集中现象
  • 批准号:
    10926057
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
  • 批准号:
    23KJ1202
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
  • 批准号:
    EP/X026027/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Study of control theory based on a reduction of nonlinear dynamical systems
基于非线性动力系统约化的控制理论研究
  • 批准号:
    22H03663
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
  • 批准号:
    2140527
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Sex/Gender influences on periodontal disease and diabetes: A population science approach, with software
性别/性别对牙周病和糖尿病的影响:人口科学方法与软件
  • 批准号:
    10531704
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
  • 批准号:
    2108856
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Formulations, Theory, and Algorithms for Nonlinear Model Reduction in Transport-Dominated Systems
职业:传输主导系统中非线性模型简化的公式、理论和算法
  • 批准号:
    2046521
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Identifying control performance limits for active noise reduction in nonlinear systems
识别非线性系统中主动降噪的控制性能限制
  • 批准号:
    2722947
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了