Tunable On-Demand Microfluidic Separations Using Traveling Wave Electrophoresis

使用行波电泳进行可调谐按需微流体分离

基本信息

项目摘要

1066730CarrollProposed is the additional development of a new technique for microfluidic separations called traveling-wave electrophoresis (TWE). This technique employs an electric field wave produced by interdigitated electrode arrays to transport charged species through a microchannel. To investigate approaches for efficient separations of complex mixtures of peptides and other biomolecular systems, the proposed research will focus on two aims: (a) establishing the dependence of band dispersion on molecular concentration, electrophoretic mobility, and molecular diffusion in TWE, and (b) demonstrating TWE separations of complex mixtures of peptides using novel separation modes accessible through TWE. These experimental aims will synergistically interact with theoretical modeling of the TWE system to understand the fundamental capabilities and limits of the process. The proposed goals will be accomplished through experiments and modeling stemming from preliminary models and experiments that have unequivocally demonstrated the feasibility of the technique. The proposed research addresses the critical need for robust, controllable, on-demand separation techniques for high-resolution, high-throughput characterization of complex biomolecular samples. TWE separations distinguish themselves from other electrophoretic microfluidic separation techniques by the use of an electric wave to transport species whose mobilities exceed a tunable threshold. TWE holds promise for separations with minimal dispersion and separations of infinite length achieved via real-time switching between separative and non-separative transport, allowing extremely high resolution separations of closely migrating analytes. The impact of this work will be felt in proteomics, molecular biology, cell biology, genetics, materials synthesis, and nanoscience. The system has the potential to make particularly strong contributions to proteomics and molecular biology based on its capability to separate closely related molecular species present in vastly different concentrations. The ability to independently control the velocities of separated bands in a single channel based on their local position without sacrificing separation efficiency will prove to be revolutionary if realized. The broader impacts of this work consist of five major areas. Of particular importance in the state of West Virginia is the incorporation of a Research Experience for Teachers. We will incorporate secondary school teachers into the research program, providing opportunities for professional development credits, and developing curricular elements meeting state guidelines for incorporation into their classrooms. The program will extend beyond the summer with the PIs interacting with the teachers and their students in the classroom, and providing opportunities for participating teachers to present their research and curricular efforts in both local and national settings. The PIs are actively involved in the development of undergraduate and graduate course work that emphasizes the importance of nanoscience and nanotechnology, both in science and in society at large. These courses reach students across different disciplines in the physical sciences, engineering, biomedicine, and the humanities and provide a common forum to facilitate cross-pollination of ideas within the university. The project will provide funding for two graduate students, one theoretical and one experimental. Work on this project will promote interdisciplinary interactions between developing physicists and chemists during their training, a very important benefit in this era of multi-disciplinary research. Outreach to underrepresented groups will be accomplished in summer research experiences for undergraduates through existing SURE, REU, and LSAMP programs. In addition, ongoing relationships with a local company, Protea, Inc. will allow immediate incorporation of research innovations in the development of commercial products for protein analysis.
1066730卡罗尔提出的是一种新的微流体分离技术的额外发展,称为行波电泳(TWE)。该技术采用由叉指电极阵列产生的电场波来通过微通道输送带电物质。为了研究有效分离肽和其他生物分子系统的复杂混合物的方法,拟议的研究将集中在两个目标上:(a)建立TWE中分子浓度、电泳迁移率和分子扩散对谱带分散的依赖性,以及(B)证明使用通过TWE可获得的新型分离模式对肽的复杂混合物进行TWE分离。这些实验目标将与TWE系统的理论建模协同互动,以了解该过程的基本能力和限制。所提出的目标将通过实验和建模来实现,这些实验和建模来自已经明确证明该技术可行性的初步模型和实验。拟议的研究解决了对复杂生物分子样品的高分辨率,高通量表征的稳健,可控,按需分离技术的迫切需求。TWE分离通过使用电波来传输迁移率超过可调阈值的物质而将其自身与其他电泳微流体分离技术区分开。TWE有望通过分离和非分离传输之间的实时切换实现具有最小分散的分离和无限长度的分离,从而允许对紧密迁移的分析物进行极高分辨率的分离。这项工作的影响将在蛋白质组学,分子生物学,细胞生物学,遗传学,材料合成和纳米科学中感受到。该系统有可能对蛋白质组学和分子生物学做出特别大的贡献,因为它能够分离浓度差异很大的密切相关的分子物种。如果能够实现在单个通道中基于分离带的局部位置独立地控制分离带的速度而不牺牲分离效率的能力,将被证明是革命性的。这项工作的广泛影响包括五个主要领域。在西弗吉尼亚州特别重要的是教师的研究经验的结合。我们将把中学教师纳入研究计划,提供专业发展学分的机会,并制定符合国家指导方针的课程内容,纳入他们的课堂。该计划将延长到夏季之后,PI将与教师和学生在课堂上互动,并为参与教师提供机会,在当地和国家环境中展示他们的研究和课程努力。PI积极参与本科和研究生课程工作的发展,强调纳米科学和纳米技术在科学和社会中的重要性。这些课程覆盖了物理科学,工程,生物医学和人文学科的不同学科的学生,并提供了一个共同的论坛,以促进大学内思想的交叉授粉。该项目将为两名研究生提供资金,一名理论研究生和一名实验研究生。该项目的工作将促进发展中的物理学家和化学家在培训期间的跨学科互动,这在这个多学科研究的时代是一个非常重要的好处。外展到代表性不足的群体将通过现有的SURE,REU和LSAMP计划在本科生的夏季研究经验完成。此外,与当地公司Protea,Inc.将允许在蛋白质分析的商业产品开发中立即纳入研究创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boyd Edwards其他文献

KUDZU: Where Did It Come From? and How Can We Stop It?
葛:它从哪里来?

Boyd Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boyd Edwards', 18)}}的其他基金

Collaborative Research: Fundamental Mechanisms of Microfluidic Traveling-Wave Electrophoresis
合作研究:微流控行波电泳的基本机制
  • 批准号:
    1808225
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Tunable On-Demand Microfluidic Separations Using Traveling Wave Electrophoresis
使用行波电泳进行可调谐按需微流体分离
  • 批准号:
    1332265
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-Israel DDEP: Asymptotic Methods at Nano/Microfluidic Interfaces in Electrokinetically Driven Systems
美国-以色列 DDEP:电动驱动系统中纳米/微流体界面的渐近方法
  • 批准号:
    0936670
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
“on-demand”释银的双响应性水凝胶体系治疗糖尿病牙周炎的作用机制探究
  • 批准号:
    82301140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: On-Demand Color Changing Materials
SBIR 第一阶段:按需变色材料
  • 批准号:
    2304234
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
  • 批准号:
    2343223
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Solar-powered methanol conversion for on-demand hydrogen production
太阳能甲醇转化用于按需制氢
  • 批准号:
    DE240100810
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
  • 批准号:
    2343225
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Contribution of allochthonous DON to biological nitrogen demand in the subtropical North Pacific
合作研究:异地 DON 对北太平洋副热带生物氮需求的贡献
  • 批准号:
    2343224
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
  • 批准号:
    2345804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
  • 批准号:
    2328395
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HertsLynx CAM On-Demand
HertsLynx CAM 点播
  • 批准号:
    10082391
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Legacy Department of Trade & Industry
A Socio-technical Study of Electricity Demand, Efficiency and Flexibility in the Urban Housing Sector of Burkina Faso
布基纳法索城市住房部门电力需求、效率和灵活性的社会技术研究
  • 批准号:
    EP/Y000935/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了