Interactions between C*-algebra and set theory

C* 代数和集合论之间的相互作用

基本信息

  • 批准号:
    1067726
  • 负责人:
  • 金额:
    $ 17.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This project involves the interaction between set theory and C*-algebras.The primary goal is to settle old outstanding open problems using settheoretic tools, which could involve proving independence results.Specific problems that could be addressed include the following: Naimark's problemabout the existence of nontrivial C*-algebras with only one irreduciblerepresentation; Anderson's conjecture about pure states restricting topure states on diagonal masas; the Kadison-Singer problem that has manyequivalent formulations and is significant to several areas of mathematics;the Stone-Weierstrass problem about the existence of proper subalgebrasthat separate pure states; the problem of Brown, Douglas, and Fillmoreabout the existence of an automorphism of the Calkin algebra taking theimage of the unilateral shift to its adjoint; and Arveson's problem aboutthe existence of sufficiently many boundary representations fornonseparable operator systems.C*-algebras, a class of mathematical structures that were originallystudied primarily for applications in physics, have over time foundsubstantial applications in a broad variety of areas of both mathematicsand physics. Much current work in this field focuses on developingfurther connections to these other areas, but fundamental questions ofbasic theory remain open. In the past decade a series of long-standingopen problems in C*-algebras have been settled using, in an essential way,techniques from the seemingly unrelated area of set theory. This was asurprising connection that has enriched both fields. Further work inthis direction is expected to lead to a better understanding of C*-algebras at a fundamental level.
这个项目涉及集合论和C*-代数之间的相互作用。主要目标是使用集合论工具解决旧的突出的开放问题,这可能涉及证明独立性结果。可以解决的具体问题包括:奈马克关于只有一个不可约表示的非平凡C*代数的存在性问题;对角线上纯态限制纯态的Anderson猜想卡迪逊-辛格问题,它有许多等价的公式,对数学的几个领域都很重要;关于分离纯态的适当子代数存在性的Stone-Weierstrass问题;Brown、Douglas和fillmore关于Calkin代数的自同构的存在性问题,该自同构取单侧移到其伴随矩阵的像;c *代数是一类数学结构,最初主要是为了在物理学中应用而研究的,随着时间的推移,它在数学和物理学的各个领域都有了实质性的应用。目前该领域的许多工作都集中在发展与这些其他领域的进一步联系上,但基本理论的基本问题仍未解决。在过去的十年中,C*代数中一系列长期存在的开放问题已经以一种基本的方式解决了,这些技术来自看似无关的集合论领域。这种令人惊讶的联系丰富了这两个领域。在这个方向上的进一步工作有望在基础水平上更好地理解C*-代数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolai Weaver其他文献

Generalized varieties
  • DOI:
    10.1007/bf01196548
  • 发表时间:
    1993-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Nikolai Weaver
  • 通讯作者:
    Nikolai Weaver
Classes closed under isomorphisms, retractions, and products
  • DOI:
    10.1007/bf01196555
  • 发表时间:
    1993-03-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Nikolai Weaver
  • 通讯作者:
    Nikolai Weaver

Nikolai Weaver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolai Weaver', 18)}}的其他基金

Differential operators on von Neumann algebras
冯·诺依曼代数上的微分算子
  • 批准号:
    0070634
  • 财政年份:
    2000
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627762
  • 财政年份:
    1996
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Fellowship Award

相似海外基金

Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1848744
  • 财政年份:
    2018
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/2
  • 财政年份:
    2016
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Fellowship
Interactions between Commutative Algebra and Representation Theory
交换代数与表示论之间的相互作用
  • 批准号:
    1500069
  • 财政年份:
    2015
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/1
  • 财政年份:
    2015
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Fellowship
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
  • 批准号:
    1501399
  • 财政年份:
    2015
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
  • 批准号:
    1522828
  • 财政年份:
    2014
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Interactions between non-commutative algebra and algebraic geometry
非交换代数与代数几何之间的相互作用
  • 批准号:
    DP130100513
  • 财政年份:
    2013
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Discovery Projects
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
  • 批准号:
    1340424
  • 财政年份:
    2013
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
Interactions between noncommutative algebra, algebraic geometry and representation theory
非交换代数、代数几何和表示论之间的相互作用
  • 批准号:
    1305377
  • 财政年份:
    2013
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Continuing Grant
Interactions between Commutative Algebra and Algebraic Geometry
交换代数与代数几何之间的相互作用
  • 批准号:
    1243074
  • 财政年份:
    2012
  • 资助金额:
    $ 17.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了