Moduli Spaces in Algebraic Geometry
代数几何中的模空间
基本信息
- 批准号:1100771
- 负责人:
- 金额:$ 40.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator works in algebraic geometry, although his interests connect to other areas of mathematics, including topology, combinatorics, physics (string theory), number theory, and symplectic and differential geometry. This proposal, continuing various strands of the investigator's work, deals with moduli spaces and related notions in a variety of settings. In particular, the proposal deals with a number of fundamental questions regarding the moduli space of curves, Geometric Invariant Theory, topology of moduli spaces, and speculative ideas coming out of theoretical physics.Algebraic geometry provides a powerful theory with which to define moduli spaces of interesting objects. Once they are defined, natural compelling questions are: what do they look like? Are they irreducible? Connected? Of what dimension? Are they smooth? If not, what singularities arise? What structure is exhibited by their cohomology rings, and why should it be geometrically expected? What are their equations? The investigator intends to address many of these fundamental problems in a number of cases. The investigator has a track record of sustained and serious effort both in outreach to students at all levels (high school, undergraduate, and graduate), and in building institutions in which algebraic geometry can grow.The investigator will continue to attract graduate students into algebraic geometry, both at Stanford and elsewhere, and to continue to nurture the careers of graduate students, post-docs, and young researchers. The investigator will continue to work with large numbers of students at the secondary and undergraduate levels, attracting students into the mathematical sciences.
研究工作在代数几何,虽然他的兴趣连接到其他领域的数学,包括拓扑学,组合学,物理学(弦理论),数论,辛和微分几何。这个建议,继续各种股的调查工作,涉及模空间和相关的概念,在各种设置。 特别是,该建议涉及一些基本问题,关于模空间的曲线,几何不变理论,拓扑的模空间,和投机的想法出来的理论物理。代数几何提供了一个强大的理论与定义模空间的有趣的对象。 一旦它们被定义,自然令人信服的问题是:它们看起来像什么? 它们是不可约的吗? 有关系? 什么维度? 它们光滑吗?如果不是,会出现什么样的奇点?它们的上同调环表现出什么样的结构,为什么在几何学上应该这样? 他们的方程式是什么? 调查员打算在一些案件中解决许多这些基本问题。 研究员有一个跟踪记录的持续和认真的努力,无论是在推广到学生在各级(高中,本科,研究生),并在建设机构,代数几何可以growth.The研究员将继续吸引研究生到代数几何,无论是在斯坦福大学和其他地方,并继续培养研究生,博士后和年轻的研究人员的职业生涯。 研究人员将继续与大量的学生在中学和本科水平,吸引学生进入数学科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Vakil其他文献
The interpolation problem: When can you pass a curve of a given type through N random points in space?
插值问题:什么时候可以将给定类型的曲线穿过空间中的 N 个随机点?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eric Larson;Ravi Vakil;Isabel Vogt - 通讯作者:
Isabel Vogt
A description of the outer automorphism of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>S</mi><mn>6</mn></msub></math>, and the invariants of six points in projective space
- DOI:
10.1016/j.jcta.2008.01.004 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howard;John Millson;Andrew Snowden;Ravi Vakil - 通讯作者:
Ravi Vakil
Erratum: The mathematical knight
- DOI:
10.1007/bf02984828 - 发表时间:
2009-01-04 - 期刊:
- 影响因子:0.400
- 作者:
Noam D. Elkies;Richard P. Stanley;Michael Kleber;Ravi Vakil - 通讯作者:
Ravi Vakil
On Conway's recursive sequence
- DOI:
10.1016/0012-365x(94)00303-z - 发表时间:
1996-05-20 - 期刊:
- 影响因子:
- 作者:
Tal Kubo;Ravi Vakil - 通讯作者:
Ravi Vakil
The best card trick
- DOI:
10.1007/bf03025305 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Michael Kleber;Ravi Vakil - 通讯作者:
Ravi Vakil
Ravi Vakil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Vakil', 18)}}的其他基金
Moduli Problems in Algebraic Geometry, their Structures, and their Applications
代数几何中的模问题、其结构及其应用
- 批准号:
1601211 - 财政年份:2016
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564500 - 财政年份:2016
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
PECASE: Intersection Theory On Moduli Spaces
PECASE:模空间的交集理论
- 批准号:
0238532 - 财政年份:2003
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
Moduli of Pointed Curves and Relative Stable Maps
尖曲线模和相对稳定映射
- 批准号:
0228011 - 财政年份:2002
- 资助金额:
$ 40.8万 - 项目类别:
Standard Grant
Moduli of Pointed Curves and Relative Stable Maps
尖曲线模和相对稳定映射
- 批准号:
0098769 - 财政年份:2001
- 资助金额:
$ 40.8万 - 项目类别:
Standard Grant
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 40.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052936 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052750 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052934 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
Moduli Spaces in Algebraic Geometry
代数几何中的模空间
- 批准号:
RGPIN-2015-05631 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052665 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Continuing Grant
Symplectic algebraic geometry and moduli spaces
辛代数几何和模空间
- 批准号:
21H04429 - 财政年份:2021
- 资助金额:
$ 40.8万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Moduli Spaces in Algebraic Geometry
代数几何中的模空间
- 批准号:
RGPIN-2015-05631 - 财政年份:2020
- 资助金额:
$ 40.8万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces of algebraic varieties
代数簇模空间的几何
- 批准号:
2445863 - 财政年份:2020
- 资助金额:
$ 40.8万 - 项目类别:
Studentship