PECASE: Intersection Theory On Moduli Spaces
PECASE:模空间的交集理论
基本信息
- 批准号:0238532
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: PECASE: Intersection Theory On Moduli SpacesInstitution: Stanford UniversityProposal ID: 0238532Complicated geometric objects often have a great deal of subtle structure. ``Moduli spaces'' for these objects in some sense capture this structure in a nice package. Properties of moduli spaces are ``universal facts'' about the objects in question. Ideas behind moduli spaces are quite old, dating back to the nineteenth century (at least). In the last thirty years, we have learned a powerful way of studying moduli spaces, thanks to the insights of Grothendieck's school. The last decade has opened up powerful new ways of understanding these spaces. Surprisingly, the impetus often came from other fields, such as theoretical physics or combinatorics. This proposal seeks to approach many pressing problems using techniques from algebraic geometry, highly motivated by insights from other fields. The results in turn should have strong applications in other fields. The investigator also seeks to attract talented high school and undergraduate students into the mathematical sciences, by exposing them to exciting and advanced yet accessible ideas, for example through problem solving; this will be done primarily through the Stanford University Math Camp, a problem solving seminar at Stanford, the Berkeley Math Circle, and various writings. In particular, the goal is to attract students from previously untapped pools of talent. Second, at the graduate level, the investigator will build a center for algebraic geometry at Stanford, by providing resources for graduate students and postdoctoral students, developing new courses, inviting visitors, and sponsoring seminars and conferences, often jointly with other institutions. Third, the investigator will continue to bring sophisticated mathematical ideas (of all levels) to a wider audience through expository writing. The investigator is an algebraic geometer whose primary interest is in intersection theory on moduli spaces. The investigator's goal is to approach many open and classical questions in geometry and related fields using both insights from other fields and modern machinery. The investigator proposes to broaden and deepen his research, by undertaking two longer-term projects, dealing with two of the most important moduli spaces in mathematics: the moduli space of curves, and the Grassmannian and its generalizations. The first project will use modern techniques to illuminate the conjectural and known combinatorial structure behind the ``geometrically natural'' part of the cohomology (or Chow) ring of moduli space of curves (the ``tautological ring''). The second project will use algebro-geometric ideas to solve classical open questions about the structure (algebraic, arithmetic, geometric, enumerative, and more) behind Littlewood-Richardson rules, Schubert problems, and generalizations to other groups. The first project relates to physics, topology, combinatorics, integrable systems, and symplectic geometry; the second involves combinatorics, representation theory, and arithmetic geometry. Thus both will involve developing a base of knowledge in a broad array of different fields, as well as lifelong working relationships and collaborations with researchers in these fields.This project was originally funded as a CAREER award, and was converted to a Presidential Early Career Award for Engineers and Scientists (PECASE) award in September 2004.
提案标题:PECASE:模空间中的相交理论研究机构:斯坦福大学提案编号:0238532复杂的几何物体往往具有大量的细微结构。在某种意义上,这些对象的“模空间”在一个很好的包中捕获了这个结构。模空间的性质是有关对象的“普遍事实”。模空间背后的思想是相当古老的,可以追溯到世纪(至少)。在过去的30年里,由于格罗滕迪克学派的深刻见解,我们学到了一种研究模空间的强有力的方法。过去的十年为理解这些空间开辟了强大的新途径。令人惊讶的是,推动力往往来自其他领域,如理论物理或组合学。这个提议试图使用代数几何的技术来解决许多紧迫的问题,这些技术受到其他领域的启发。这些结果反过来应该在其他领域有很强的应用。调查员还试图吸引有才华的高中和本科生进入数学科学,通过让他们接触到令人兴奋的和先进的但可访问的想法,例如通过解决问题;这将主要通过斯坦福大学数学营,在斯坦福大学解决问题的研讨会,伯克利数学圈和各种著作来完成。特别是,目标是吸引以前未开发的人才库的学生。第二,在研究生阶段,研究员将在斯坦福大学建立一个代数几何中心,为研究生和博士后提供资源,开发新课程,邀请访问者,并经常与其他机构联合举办研讨会和会议。第三,研究人员将继续通过写作将复杂的数学思想(所有级别)带给更广泛的受众。调查员是一个代数几何的主要兴趣是在交叉理论的模空间。研究者的目标是利用其他领域和现代机械的见解来解决几何和相关领域的许多开放和经典问题。研究者建议通过开展两个长期项目来扩大和深化他的研究,处理数学中两个最重要的模空间:曲线的模空间和格拉斯曼及其推广。第一个项目将使用现代技术来阐明曲线的模空间的上同调(或周)环(重言式环)的“几何自然”部分背后的结构和已知的组合结构。第二个项目将使用代数几何思想来解决经典的开放式问题的结构(代数,算术,几何,枚举,和更多)背后的Littlewood-Richardson规则,舒伯特问题,并推广到其他群体。第一个项目涉及物理学、拓扑学、组合学、可积系统和辛几何;第二个项目涉及组合学、表示论和算术几何。 因此,两者都将涉及在广泛的不同领域建立知识基础,以及与这些领域的研究人员建立终身工作关系和合作。该项目最初是作为职业奖资助的,并于2004年9月转变为总统工程师和科学家早期职业奖(PECase)奖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravi Vakil其他文献
The interpolation problem: When can you pass a curve of a given type through N random points in space?
插值问题:什么时候可以将给定类型的曲线穿过空间中的 N 个随机点?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Eric Larson;Ravi Vakil;Isabel Vogt - 通讯作者:
Isabel Vogt
A description of the outer automorphism of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mi>S</mi><mn>6</mn></msub></math>, and the invariants of six points in projective space
- DOI:
10.1016/j.jcta.2008.01.004 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Ben Howard;John Millson;Andrew Snowden;Ravi Vakil - 通讯作者:
Ravi Vakil
Erratum: The mathematical knight
- DOI:
10.1007/bf02984828 - 发表时间:
2009-01-04 - 期刊:
- 影响因子:0.400
- 作者:
Noam D. Elkies;Richard P. Stanley;Michael Kleber;Ravi Vakil - 通讯作者:
Ravi Vakil
On Conway's recursive sequence
- DOI:
10.1016/0012-365x(94)00303-z - 发表时间:
1996-05-20 - 期刊:
- 影响因子:
- 作者:
Tal Kubo;Ravi Vakil - 通讯作者:
Ravi Vakil
The best card trick
- DOI:
10.1007/bf03025305 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Michael Kleber;Ravi Vakil - 通讯作者:
Ravi Vakil
Ravi Vakil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravi Vakil', 18)}}的其他基金
Moduli Problems in Algebraic Geometry, their Structures, and their Applications
代数几何中的模问题、其结构及其应用
- 批准号:
1601211 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Crossing the Walls in Enumerative Geometry
FRG:协作研究:跨越枚举几何的墙壁
- 批准号:
1564500 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Moduli of Pointed Curves and Relative Stable Maps
尖曲线模和相对稳定映射
- 批准号:
0228011 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Moduli of Pointed Curves and Relative Stable Maps
尖曲线模和相对稳定映射
- 批准号:
0098769 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Global analysis of GKZ systems and new development of intersection theory
GKZ系统全局分析及交集理论新进展
- 批准号:
22K13930 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
- 批准号:
2137060 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
- 批准号:
2100962 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Intersection Theory and Height Pairings in Arithmetic Geometry
算术几何中的交集理论和高度配对
- 批准号:
2101787 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Conical Intersection Search Using a Multireference Perturbation Theory
使用多参考扰动理论进行圆锥交点搜索
- 批准号:
20K15230 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Intersection theory and cobordism with a quadratic twist
相交理论和二次扭曲的协边
- 批准号:
437860477 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Research Grants
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Research and Training at the Intersection of Number Theory and Analysis
职业:数论与分析交叉点的研究和培训
- 批准号:
1652173 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
- 批准号:
RGPIN-2014-05614 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual