Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
基本信息
- 批准号:1101165
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are several main topics in the proposal: 1) Thermodynamic formalism for nonuniformly hyperbolic dynamical systems -- this is to build statistical physics of phase transitions for systems with nonzero Lyapunov. 2) SRB measures for nonuniformly hyperbolic systems - this is to to build "physically natural" class of invariant measures for dissipative systems. 3) Coexistence of hyperbolic and non-hyperbolic behavior -- this is to complement the famous Kolmogorov-Arnold-Moser (KAM) theory by constructing particular examples of systems with coexistence of nonzero Lyapunov exponents and areas with zero entropy. 4) Anosov rigidity - this is to establish a subtle relation between uniform and nonuniform types of hyperbolicity. 5) Dimension of non-conformal repellers - this is to study Hausdorff dimension for generic non-conformal repellers.The proposed research deals with problems in the theory of smooth dynamical systems and their applications to mathematical and statistical physics and geometry. The main subject of study is hyperbolic dynamical systems that provide a mathematical foundation for the paradigm that is widely known as ``deterministic chaos'' -- the appearance of irregular chaotic motions in purely deterministic dynamical systems. This paradigm asserts that conclusions about global properties of a nonlinear dynamical system with sufficiently strong hyperbolic behavior can be deduced from studying the linearized system along its trajectories. The study of hyperbolic phenomena originated in seminal works of Artin, Morse, Hedlund, and Hopf on ergodic properties of geodesic flows on compact surfaces. Later, hyperbolic behavior was observed in other situations (e,g, Smale horseshoes and hyperbolic toral automorphism). The systematic study of hyperbolicity was initiated by Smale, Anosov and Sinai who studied systems with sufficiently strong hyperbolic behavior. Such systems possess high level of unpredictability and exhibit strong chaotic behavior. In the proposal the PI considers the weakest (hence, most general) form of hyperbolicity known as nonuniform hyperbolicity. The theory of nonuniformly hyperbolic dynamical systems originated in the work of the PI (sometimes this theory is referred to as ``Pesin theory'') and the study of these systems is based upon the theory of Lyapunov exponents. The PI's theory has a wide impact on the entire field. The PI will work with graduate students during the period of this award.
提案中有几个主要主题:1)非均匀双曲动力系统的热力学形式化-这是为了建立具有非零李雅普诺夫系统的相变统计物理。2)非均匀双曲系统的SRB测量-这是为了建立耗散系统的“物理自然”类不变测量。3)双曲和非双曲行为的共存——这是对著名的Kolmogorov-Arnold-Moser (KAM)理论的补充,通过构建具有非零Lyapunov指数和零熵区域共存的系统的特定示例。4)阿诺索夫刚性-这是建立均匀型和非均匀型双曲之间的微妙关系。5)非保形驱避剂尺寸——研究通用非保形驱避剂的豪斯多夫尺寸。提出的研究涉及光滑动力系统理论中的问题及其在数学、统计物理和几何中的应用。研究的主要主题是双曲动力系统,它为被广泛称为“确定性混沌”的范式提供了数学基础——在纯确定性动力系统中出现的不规则混沌运动。这一范式表明,对于具有足够强双曲行为的非线性动力系统,可以通过沿其轨迹研究线性化系统而得出关于其全局性质的结论。双曲现象的研究起源于Artin、Morse、Hedlund和Hopf关于紧致表面上测地线流动的遍历性质的开创性著作。后来,在其他情况下(例如,小马蹄铁和双曲整体自同构)也观察到双曲行为。双曲性的系统研究是由Smale、Anosov和Sinai发起的,他们研究了具有足够强双曲性的系统。这种系统具有高度的不可预测性,并表现出强烈的混沌行为。在这个提议中,PI考虑了最弱的(因此也是最一般的)双曲形式,即非均匀双曲。非均匀双曲动力系统的理论起源于PI的工作(有时这个理论被称为“Pesin理论”),这些系统的研究是基于李雅普诺夫指数理论。PI的理论对整个领域产生了广泛的影响。在此奖项期间,PI将与研究生一起工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yakov Pesin其他文献
明治三十年前半の帝国教育会における研究活動の展開 -学制調査部と国字改良部に注目して-
1900年代上半期帝国教育会研究活动的开展 -以教育制度研究部和国民素质提高部为中心-
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Michihiro Hirayama;Yakov Pesin;Michihiro Hirayama;Michihiro Hirayama;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人 - 通讯作者:
白石崇人
明治21年の大日本教育会における「研究」の事業化過程
1898年大日本教育协会将“研究”商业化的过程
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Michihiro Hirayama;Yakov Pesin;Michihiro Hirayama;Michihiro Hirayama;白石崇人 - 通讯作者:
白石崇人
Effect of semen collection in extender solution on the characteristics of goat spermatozoa.
稀释液中精液采集对山羊精子特性的影响。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Michihiro Hirayama;Yakov Pesin;Michihiro Hirayama;Michihiro Hirayama;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人;Yamashiro H - 通讯作者:
Yamashiro H
Transcripts encoding the enzymes that convert acetyl-CoA to cholesterol are induced in cumulus cells and are essential for progesterone biosynthesis and meiotic resumption of porcine oocvtes.
编码将乙酰辅酶A转化为胆固醇的酶的转录物在卵丘细胞中被诱导,并且对于猪卵母细胞的孕酮生物合成和减数分裂恢复至关重要。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Michihiro Hirayama;Yakov Pesin;Michihiro Hirayama;Michihiro Hirayama;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人;白石崇人;Yamashiro H;Yamashiro H;Yamashiro H;Wang HF;Yamashiro H;Shimada M - 通讯作者:
Shimada M
Second Variational Formulae for Dimension Spectra
维数谱的二阶变分公式
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Michihiro Hirayama;Yakov Pesin;Michihiro Hirayama - 通讯作者:
Michihiro Hirayama
Yakov Pesin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yakov Pesin', 18)}}的其他基金
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1400027 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Hyperbolic Dynamics, Large Deviations and Fluctuations
双曲动力学、大偏差和波动
- 批准号:
1300155 - 财政年份:2013
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
TRAVEL SUPPORT FOR PARTICIPANTS OF PROGRESS IN DYNAMICS
为动态进步参与者提供旅行支持
- 批准号:
0968747 - 财政年份:2009
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Model
动力系统主题:吸引子、维度、晶格模型
- 批准号:
0754911 - 财政年份:2008
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Workshop in Dynamical Systems and Related Topics
动力系统及相关主题研讨会
- 批准号:
0606947 - 财政年份:2006
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Model
动力系统主题:吸引子、维度、晶格模型
- 批准号:
0503810 - 财政年份:2005
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Travel Support for Participants of International Conference "Kolmogorov and Contemporary Mathematics", June 16-21, 2003; Moscow, Russia
为2003年6月16-21日“柯尔莫哥洛夫与当代数学”国际会议与会者提供差旅费资助;
- 批准号:
0244702 - 财政年份:2003
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Erodic Properties for 'Almost Hyperbolic' Systems
“几乎双曲”系统的侵蚀特性
- 批准号:
0196234 - 财政年份:2001
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Model
动力系统主题:吸引子、维度、晶格模型
- 批准号:
0088971 - 财政年份:2000
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
- 批准号:
2230142 - 财政年份:2022
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1800679 - 财政年份:2018
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control Strategies
动力系统专题:切换和连续控制策略设计的新数学框架
- 批准号:
1436856 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
- 批准号:
1401224 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1400027 - 财政年份:2014
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1343081 - 财政年份:2013
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Dynamical Systems Special Topics: Dynamics of granular materials: jamming, avalanches, disorder, and localization
动力系统专题:颗粒材料动力学:干扰、雪崩、无序和定位
- 批准号:
1069224 - 财政年份:2011
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Travel Grants to the Meeting on Emerging Topics in Dynamical Systems and Partial Differential Equations
动力系统和偏微分方程新兴主题会议的旅费补助
- 批准号:
1005171 - 财政年份:2010
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant