Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
基本信息
- 批准号:1413603
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While many physical, biological, climatological, and financial processes appear to be subject to random or stochastic forces, there are also coherent structures underlying these processes that give some measure of predictability. This project is laying the groundwork both for the determination of these hidden structures and for analyzing specific situations arising in several applications. Among these is the embryonic development of the wing of a fruit fly and its newly discovered relation to current through potassium channels in the cell membrane. Part of this project is to develop and use sophisticated mathematical techniques to understand that ionic current. The fruit fly model has implications for mammalian development and may lead to an understanding of the cause of some serious birth defects. Applications of the abstract mathematical investigations also include understanding of other dynamical systems subject to random perturbations, including the density distribution in highly excited plasmas or the fine structure of an alloy and how defects are distributed and evolve in time. This project builds upon the past work of the principal investigators and others to establish the existence of coherent structures embedded in the phase space of complex dynamical systems, both finite- and infinite-dimensional and both deterministic or subject to random forcing. The fundamental and abstract theory to be developed during the course of the project lies behind concrete and observed phenomena in the physical and biological sciences, particularly at the molecular, microscopic, or nano-scale. Infinite-dimensional dynamical systems are required to represent the temporal and spatial fluctuations of quantities subject to physical laws or biochemical processes, such as the distribution of bone morphogenic protein in a developing embryonic fly wing, the current through an ion channel in a cell membrane, the density of a relativistic plasma, or the motion of microscopic defects in an alloy, to name just a few of the systems considered in this project. Furthermore, as complex as these may be, stochastic perturbations must be considered due to thermal or other fluctuations in the environment and imprecise measurement of quantities at small scales. While one cannot hope to give exact representations of all states subject to complex spatial and temporal interaction, one can sometimes glean information due to the presence of robust, but possibly hidden, structures such as invariant manifolds and their invariant foliations whose existence is implied by the laws governing the processes under investigation. The goals of this project are to discover the conditions under which such structures exist, even when stochastically forced, and to examine the implications in the particular physical and biological systems underlying the equations.
虽然许多物理,生物,气候和金融过程似乎受到随机或随机力量的影响,但这些过程也有连贯的结构,这些结构提供了一定程度的可预测性。该项目正在为确定这些隐藏结构和分析几种应用中出现的具体情况奠定基础。其中包括果蝇翅膀的胚胎发育及其与细胞膜钾通道电流的新发现。 这个项目的一部分是开发和使用复杂的数学技术来理解离子电流。 果蝇模型对哺乳动物的发育有影响,并可能导致对一些严重出生缺陷原因的理解。抽象数学研究的应用还包括对其他受随机扰动的动力系统的理解,包括高度激发的等离子体中的密度分布或合金的精细结构,以及缺陷如何分布和随时间演变。 该项目建立在主要研究者和其他人过去的工作基础上,以建立嵌入在复杂动力系统相空间中的相干结构的存在,包括有限维和无限维,以及确定性或随机强迫。 在项目过程中开发的基础和抽象理论是物理和生物科学中具体和观察到的现象,特别是在分子,微观或纳米尺度上。 需要无限维动力系统来表示受物理定律或生物化学过程影响的量的时间和空间波动,例如发育中的胚胎苍蝇翅膀中骨形态发生蛋白的分布,通过细胞膜中离子通道的电流,相对论等离子体的密度,或合金中微观缺陷的运动,这里仅列举本项目中考虑的几个系统。 此外,尽管这些可能很复杂,但由于环境中的热波动或其他波动以及小尺度上的不精确测量,必须考虑随机扰动。 虽然人们不能希望给出所有受复杂的空间和时间相互作用的状态的精确表示,但有时可以收集信息,因为存在鲁棒的,但可能隐藏的结构,如不变流形及其不变的叶理,其存在是由控制研究过程的定律所暗示的。 该项目的目标是发现这种结构存在的条件,即使是在随机强迫的情况下,并研究这些方程背后的特定物理和生物系统的含义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kening Lu其他文献
Limiting behavior of FitzHugh-Nagumo equations driven by colored noise on unbounded thin domains
无界薄域上有色噪声驱动的 FitzHugh-Nagumo 方程的极限行为
- DOI:
10.1142/s0219493722400093 - 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Lin Shi;Kening Lu;Xiaohu Wang - 通讯作者:
Xiaohu Wang
Seasonal home range utilization of Hainan gibbons (emNomascus hainanus/em) in a secondary tropical forest of Hainan Island, South China
海南岛次生热带森林中海南长臂猿季节性家域利用
- DOI:
10.1016/j.gecco.2024.e03063 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:3.400
- 作者:
Dexu Zhang;Xuming Qi;Shuai Liu;Kening Lu;Yuan Chen;Wenxing Long - 通讯作者:
Wenxing Long
Limiting behavior of FitzHugh-Nagumo equations driven by colored noise on unbounded thin domains
- DOI:
https://doi.org/10.1142/S0219493722400093 - 发表时间:
2022 - 期刊:
- 影响因子:1.1
- 作者:
Lin Shi;Kening Lu;Xiaohu Wang - 通讯作者:
Xiaohu Wang
Stationary approximations of stochastic wave equations on unbounded domains with critical exponents
- DOI:
tps://doi.org/10.1063/5.0011987 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Xiaohu Wang;Kening Lu;Bixiang Wang - 通讯作者:
Bixiang Wang
U-disk portable photoelectrochemical sensor based on bifunctional poly(emo/em-phenylenediamine) for on-site detection of erythromycin
基于双功能聚(emo/em-phenyrenadiamine)的U盘便携式光电化学传感器,用于现场检测红霉素
- DOI:
10.1016/j.snb.2024.135531 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:7.700
- 作者:
Qi Zheng;Yang Chen;Yuyan Cao;Yuhui He;Kening Lu;Nengqin Jia - 通讯作者:
Nengqin Jia
Kening Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kening Lu', 18)}}的其他基金
Collaborative Research: Invariant manifolds for multiscale stochastic dynamical systems
合作研究:多尺度随机动力系统的不变流形
- 批准号:
0909400 - 财政年份:2009
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
U.S.-Asian Workshop on Nonlinear Dynamics and SPDE's
美国-亚洲非线性动力学和 SPDE 研讨会
- 批准号:
0308601 - 财政年份:2003
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
America's Workshop On Nonlinear Dynamics, Edmonton, Canada, July 7-12, 2002
美国非线性动力学研讨会,加拿大埃德蒙顿,2002 年 7 月 7-12 日
- 批准号:
0206881 - 财政年份:2002
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics of Partial Differential Equations
数学科学:偏微分方程动力学
- 批准号:
9622853 - 财政年份:1996
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mathematical Sciences: Structural Stability for Parabolic Equations
数学科学:抛物线方程的结构稳定性
- 批准号:
9400233 - 财政年份:1994
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Mathematical Sciences: Structural Stability and Floquet Theory for Parabolic Equations
数学科学:结构稳定性和抛物线方程的 Floquet 理论
- 批准号:
9123071 - 财政年份:1992
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205852 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
- 批准号:
2152288 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205771 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
- 批准号:
2152303 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
- 批准号:
1726699 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
- 批准号:
1726856 - 财政年份:2017
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512267 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
- 批准号:
1512422 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Closing the User-Model Loop for Understanding Topics in Large Document Collections
III:媒介:协作研究:关闭用户模型循环以理解大型文档集合中的主题
- 批准号:
1409287 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Many-Body Theory
协作研究:多体理论主题
- 批准号:
1401410 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant