Geometry of Moduli Spaces and Applications
模空间几何及其应用
基本信息
- 批准号:1101153
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to study the geometry of moduli spaces, such as their dimensions, irreducible components, birational types, and geometric invariants. The principal investigator plans to carry out the study in several directions. Firstly, he would like to study Teichmueller curves, which are rigid geodesics in the moduli space of curves, and hence can provide crucial information for the geometry of the moduli space. Secondly, he wants to explore moduli spaces parameterizing curves in an ambient space, focusing on the comparison between the moduli space of stable maps, the moduli space of semi-stable sheaves, Hilbert scheme and Chow variety. Finally, he plans to study the Jacobian variety of line bundles on a non-reduced curve, which may reveal geometric properties of smooth curves by deformation and degeneration techniques. This project belongs to the subject of algebraic geometry, whose main objects are algebraic varieties defined by the solution sets of polynomial equations. Moduli spaces parameterize varieties of a given type. For instance, a donut and a car tire are of the same type, because they both have one hole, but a pretzel with three holes is different. An attractive aspect is that a moduli space for its objects tends itself to be a variety. Therefore, studying moduli spaces can help us understand the classification of algebraic varieties. In addition, moduli spaces have been extensively used in many other fields. The principal investigator expects that the outcome of this project can enrich the studies of other subjects, including combinatorics, dynamics, enumerative geometry and mathematical physics.
这一建议旨在研究模空间的几何,如它们的维度、不可约分支、双胞型和几何不变量。首席调查员计划从几个方向开展这项研究。首先,他想研究Teichmueller曲线,它是曲线的模空间中的刚性测地线,因此可以为模空间的几何提供关键信息。其次,他研究了环境空间中参数曲线的模空间,重点比较了稳定映射的模空间、半稳定层的模空间、Hilbert格式和Chow簇。最后,他计划研究非约化曲线上的线丛的雅可比变化,这可能通过变形和退化技术来揭示光滑曲线的几何性质。本课题属于代数几何学科,其主要研究对象是由多项式方程解集定义的代数簇。模空间将给定类型的簇参数化。例如,甜甜圈和汽车轮胎是同一类型的,因为它们都有一个洞,但有三个洞的椒盐卷饼是不同的。一个吸引人的方面是,对象的模空间本身往往是多种多样的。因此,研究模空间可以帮助我们理解代数簇的分类。此外,模空间在许多其他领域也有广泛的应用。首席研究人员期望该项目的成果可以丰富其他学科的研究,包括组合学、动力学、计数几何和数学物理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dawei Chen其他文献
Targeted delivery of miRNA 155 to tumor associated macrophages for tumor immunotherapy
将 miRNA 155 靶向递送至肿瘤相关巨噬细胞以进行肿瘤免疫治疗
- DOI:
10.1021/acs.molpharmaceut.9b00065 - 发表时间:
2019 - 期刊:
- 影响因子:4.9
- 作者:
Xinlong Zang;Xiaoxu Zhang;Xiuli Zhao;Haiyang Hu;Mingxi Qiao;Yihui Deng;Dawei Chen - 通讯作者:
Dawei Chen
Onboard air curtain dust removal method for longwall mining: Environmental pollution prevention
长壁开采车载风幕除尘方法:预防环境污染
- DOI:
10.1016/j.jece.2021.106387 - 发表时间:
2021-09 - 期刊:
- 影响因子:7.7
- 作者:
Xu Zhang;Wen Nie;Huitian Peng;Dawei Chen;Tao Du;Bo Yang;Wenjin Niu - 通讯作者:
Wenjin Niu
The antitumor activities of Cucurbitacin Liposome for Injection both in vitro and in vivo
注射用葫芦素脂质体的体内外抗肿瘤活性
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Junwei Wang;Xiaomian Zhou;Ying;Jinfang Xiao;Enlong Ma;Yihui Deng;Dawei Chen - 通讯作者:
Dawei Chen
Biocatalytic Bis-C-alkylation of Phenolics using One-pot Cascades with Promiscuous C-Glycosyltransferase and Prenyltransferase
使用混杂 C-糖基转移酶和异戊二烯基转移酶的一锅级联对酚类进行生物催化双-C-烷基化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Dawei Chen;Lili Sun;Ridao Chen;Kebo Xie;Lin Yang;Jungui Dai - 通讯作者:
Jungui Dai
Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria
金属液滴撞击干燥光滑壁的动态行为:SPH 模拟和飞溅准则
- DOI:
10.1016/j.euromechflu.2021.01.013 - 发表时间:
2021-07 - 期刊:
- 影响因子:0
- 作者:
Tianyu Ma;Dawei Chen;Haiquan Sun;Dongjun Ma;Aiguo Xu;Pei Wang - 通讯作者:
Pei Wang
Dawei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dawei Chen', 18)}}的其他基金
CAREER: Moduli Space of Curves and Teichmueller Dynamics
职业:曲线模空间和 Teichmueller 动力学
- 批准号:
1350396 - 财政年份:2014
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
- 批准号:
1200329 - 财政年份:2011
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 12.6万 - 项目类别:
Research Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
- 批准号:
RGPIN-2022-04908 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
- 批准号:
RGPIN-2020-04060 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
- 批准号:
22K18669 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
- 批准号:
RGPIN-2021-04169 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




