Moduli of Differentials

微分模

基本信息

  • 批准号:
    2001040
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The concept of differentials dates back to the origin of calculus. For instance, integration of differentials can tell us about distance, area, volume, etc, for the physical world. Nowadays the study of differentials has broad connections to a number of fields in and outside of mathematics. It has been proven extremely useful that one should collect differentials with similar structures into a parameter space (called moduli space) and study the global properties of this space, which can in turn determine crucial information about each individual differential. The principal investigator plans to explore new, fascinating properties of differentials as well as their moduli spaces. Moreover, he plans to discover hidden connections between initially unrelated subjects in which differentials appear from different aspects. The proposed project also opens many gates for student and postdoctoral research. The principal investigator will continue to integrate his research with undergraduate, graduate and postdoctoral training as well as conference organizations. In particular, he plans to advise student research projects, design new courses, and organize a series of workshops, with a focus on increasing diversity and supporting underrepresented groups. The moduli space of differentials on Riemann surfaces can be stratified according to the types of zeros and poles. Each stratum is equipped with a group action by varying the polygonal structure induced by a differential. Various questions about surface geometry reduce to understanding the strata of differentials and orbits under the action. The principal investigator plans to employ his expertise in algebraic geometry, combined with mixing techniques from analysis, dynamics and topology, to study these strata and orbits, such as their volumes, geodesics, and boundary behavior. An ultimate goal is to establish a correspondence between dynamical invariants of differentials and intersection theory on moduli spaces. Moreover, the PI plans to use the obtained results to analyze algebro-geometric properties of moduli spaces, such as birational types, compactifications, and tautological rings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微分的概念可以追溯到微积分的起源。 例如,微分积分可以告诉我们物理世界的距离、面积、体积等。 如今,微分研究与数学内外的许多领域有着广泛的联系。 事实证明,人们应该将具有相似结构的微分收集到参数空间(称为模空间)中并研究该空间的全局属性,这反过来可以确定有关每个单独微分的关键信息,这是非常有用的。 首席研究员计划探索微分及其模空间的新的、令人着迷的性质。 此外,他计划发现原本不相关的主题之间隐藏的联系,其中从不同方面出现差异。 拟议的项目还为学生和博士后研究打开了许多大门。 首席研究员将继续将他的研究与本科生、研究生和博士后培训以及会议组织相结合。 他特别计划为学生研究项目提供建议、设计新课程并组织一系列研讨会,重点是增加多样性和支持代表性不足的群体。 黎曼曲面上微分的模空间可以根据零点和极点的类型进行分层。 每个层都通过改变差异引起的多边形结构来配备集体行动。 关于表面几何的各种问题都归结为理解作用下的微分层和轨道。 首席研究员计划利用他在代数几何方面的专业知识,结合分析、动力学和拓扑的混合技术,来研究这些地层和轨道,例如它们的体积、测地线和边界行为。 最终目标是建立微分动态不变量与模空间交集理论之间的对应关系。 此外,PI 计划利用所获得的结果来分析模空间的代数几何性质,例如双有理类型、紧化和同义反复环。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The WYSIWYG compactification
所见即所得的紧凑化
Masur–Veech volumes and intersection theory: The principal strata of quadratic differentials
Masur-Veech 体积和交集理论:二次微分的主要层
  • DOI:
    10.1215/00127094-2022-0063
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chen, Dawei;Möller, Martin;Sauvaget, Adrien
  • 通讯作者:
    Sauvaget, Adrien
Complete curves in the strata of differentials
差分层中的完整曲线
Dynamical invariants and intersection theory on the flex and gothic loci
Flex 和 Gothic 轨迹的动力学不变量和交集理论
  • DOI:
    10.1007/s40879-021-00511-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Chen, Dawei
  • 通讯作者:
    Chen, Dawei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dawei Chen其他文献

Numerical simulation study on the coupling mechanism of composite-source airflow–dust field in a fully mechanized caving face
综放工作面复合源气流与粉尘场耦合机理数值模拟研究
  • DOI:
    10.1016/j.powtec.2019.08.048
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zihao Xiu;Wen Nie;Dawei Chen;Jiayi Yan;Qiang Liu;Cunhou Wei
  • 通讯作者:
    Cunhou Wei
Efficient oxidation of p-xylene to terephthalic acid by using N,N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate
使用 N,N-二羟基均苯四酰亚胺与苯三羧酸酯联用有效氧化对二甲苯生成对苯二甲酸
  • DOI:
    10.1016/j.apcata.2020.117569
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luo Xu;Dawei Chen;Haoran Jiang;Xia Yuan
  • 通讯作者:
    Xia Yuan
Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria
金属液滴撞击干燥光滑壁的动态行为:SPH 模拟和飞溅准则
  • DOI:
    10.1016/j.euromechflu.2021.01.013
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyu Ma;Dawei Chen;Haiquan Sun;Dongjun Ma;Aiguo Xu;Pei Wang
  • 通讯作者:
    Pei Wang
Biocatalytic Bis-C-alkylation of Phenolics using One-pot Cascades with Promiscuous C-Glycosyltransferase and Prenyltransferase
使用混杂 C-糖基转移酶和异戊二烯基转移酶的一锅级联对酚类进行生物催化双-C-烷基化
AFFINE GEOMETRY OF STRATA OF DIFFERENTIALS
微分层的仿射几何

Dawei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dawei Chen', 18)}}的其他基金

New Advances on Flat Surfaces
平面的新进展
  • 批准号:
    2301030
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Moduli Space of Curves and Teichmueller Dynamics
职业:曲线模空间和 Teichmueller 动力学
  • 批准号:
    1350396
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
  • 批准号:
    1101153
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
  • 批准号:
    1200329
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Catholic-Protestant Earnings Differentials in Northern Ireland 2011 NISRA BDR Programme
2011 年 NISRA BDR 计划北爱尔兰天主教与新教的收入差异
  • 批准号:
    ES/X008150/1
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
The Rise in Unmarried Population in Japan: Growing Socioeconomic Differentials in Family Life?
日本未婚人口的增加:家庭生活中社会经济差异的扩大?
  • 批准号:
    22K01851
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex quartic differentials on surfaces
曲面上的复四次微分
  • 批准号:
    21K03228
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Education differentials and Population Growth on Pension Systems
教育差异和人口增长对养老金制度的影响
  • 批准号:
    2492470
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Education differentials and Population Growth on Pension Systems
教育差异和人口增长对养老金制度的影响
  • 批准号:
    2498861
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Rethinking Vulnerability: Perception, Behaviour, and Power Differentials in Mixed Road-User Interactions
重新思考脆弱性:混合道路使用者交互中的感知、行为和权力差异
  • 批准号:
    2282280
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Biological Underpinnings of Socioeconomic Differentials in Health and Mortality
健康和死亡率社会经济差异的生物学基础
  • 批准号:
    10433978
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
Firm Wage Differentials in Imperfect Labour Markets: The Role of Market Power and Industrial Relations in Rent Splitting between Workers and Firms
不完善劳动力市场中的企业工资差异:市场力量和劳资关系在工人和企业之间分摊租金中的作用
  • 批准号:
    402977338
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
Biological Underpinnings of Socioeconomic Differentials in Health and Mortality
健康和死亡率社会经济差异的生物学基础
  • 批准号:
    9981574
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
Biological Underpinnings of Socioeconomic Differentials in Health and Mortality
健康和死亡率社会经济差异的生物学基础
  • 批准号:
    9766180
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了