CAREER: Moduli Space of Curves and Teichmueller Dynamics

职业:曲线模空间和 Teichmueller 动力学

基本信息

  • 批准号:
    1350396
  • 负责人:
  • 金额:
    $ 42.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

An Abelian differential defines a flat metric on the underlying Riemann surface. Varying the flat structure induces an action on moduli spaces of Abelian differentials; this is called Teichmueller dynamics. A number of questions about the geometry of Riemann surfaces boils down to the study of the orbits under such dynamics. The proposed project aims to explore Teichmueller dynamics using tools in algebraic geometry and to develop applications to the geometry of the moduli space of Riemann surfaces. The ultimate goal is to establish a correspondence between dynamical properties of these orbits and the intersection theory of their closures in the moduli space. Moreover, the intersection calculation can determine the cycle class of an orbit closure in the moduli space, which in turn provides crucial information towards understanding the cone of effective divisors, cone of curves, Chow ring structure, and birational models for the moduli space. Algebraic geometry and dynamical systems are two important branches of modern mathematics. The former uses algebraic (polynomial) equations to study geometrical structures, while the latter applies analytical tools to describe the time dependence of a moving point. Despite the fact they initially seem unrelated, the principal investigator plans to explore their inner connections by constructing algebraic equations to measure the behavior of Teichmueller dynamics. In a sense this is analogous to introducing coordinates in Descartes geometry. The proposed project also opens many avenues for student and postdoctoral research. The principal investigator will continue to integrate his research with undergraduate, graduate and post-graduate training as well as workshop organization. More precisely, he plans to develop a student mathematics symposium, advise student research projects, design new courses in algebraic geometry, create a junior scholar visiting program, and organize a series of conferences and workshops with a focus on students and young researchers.
阿贝尔微分定义了底层黎曼曲面上的平面度量。改变平面结构会引起对阿贝尔微分模空间的作用;这就是所谓的 Teichmueller 动力学。有关黎曼曲面几何形状的许多问题都可以归结为对这种动力学下轨道的研究。拟议项目旨在使用代数几何工具探索 Teichmueller 动力学,并开发黎曼曲面模空间几何的应用。最终目标是建立这些轨道的动力学特性与其在模空间中的闭包相交理论之间的对应关系。此外,交集计算可以确定模空间中轨道闭合的循环类,这反过来又为理解模空间的有效除数锥、曲线锥、周环结构和双有理模型提供了重要信息。代数几何和动力系统是现代数学的两个重要分支。前者使用代数(多项式)方程来研究几何结构,而后者则应用分析工具来描述移动点的时间依赖性。尽管它们最初看起来无关,但首席研究员计划通过构建代数方程来测量 Teichmueller 动力学的行为来探索它们的内在联系。从某种意义上说,这类似于在笛卡尔几何中引入坐标。拟议的项目还为学生和博士后研究开辟了许多途径。首席研究员将继续将他的研究与本科生、研究生和研究生培训以及研讨会组织相结合。更准确地说,他计划举办学生数学研讨会,为学生研究项目提供建议,设计代数几何新课程,创建初级学者访问计划,并组织一系列以学生和年轻研究人员为重点的会议和研讨会。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The WYSIWYG compactification
所见即所得的紧凑化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dawei Chen其他文献

Numerical simulation study on the coupling mechanism of composite-source airflow–dust field in a fully mechanized caving face
综放工作面复合源气流与粉尘场耦合机理数值模拟研究
  • DOI:
    10.1016/j.powtec.2019.08.048
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zihao Xiu;Wen Nie;Dawei Chen;Jiayi Yan;Qiang Liu;Cunhou Wei
  • 通讯作者:
    Cunhou Wei
Efficient oxidation of p-xylene to terephthalic acid by using N,N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate
使用 N,N-二羟基均苯四酰亚胺与苯三羧酸酯联用有效氧化对二甲苯生成对苯二甲酸
  • DOI:
    10.1016/j.apcata.2020.117569
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luo Xu;Dawei Chen;Haoran Jiang;Xia Yuan
  • 通讯作者:
    Xia Yuan
Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria
金属液滴撞击干燥光滑壁的动态行为:SPH 模拟和飞溅准则
  • DOI:
    10.1016/j.euromechflu.2021.01.013
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyu Ma;Dawei Chen;Haiquan Sun;Dongjun Ma;Aiguo Xu;Pei Wang
  • 通讯作者:
    Pei Wang
Biocatalytic Bis-C-alkylation of Phenolics using One-pot Cascades with Promiscuous C-Glycosyltransferase and Prenyltransferase
使用混杂 C-糖基转移酶和异戊二烯基转移酶的一锅级联对酚类进行生物催化双-C-烷基化
AFFINE GEOMETRY OF STRATA OF DIFFERENTIALS
微分层的仿射几何

Dawei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dawei Chen', 18)}}的其他基金

New Advances on Flat Surfaces
平面的新进展
  • 批准号:
    2301030
  • 财政年份:
    2023
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Standard Grant
Moduli of Differentials
微分模
  • 批准号:
    2001040
  • 财政年份:
    2020
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Standard Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
  • 批准号:
    1101153
  • 财政年份:
    2011
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Standard Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
  • 批准号:
    1200329
  • 财政年份:
    2011
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Standard Grant

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
  • 批准号:
    EP/X002004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
  • 批准号:
    DE220100918
  • 财政年份:
    2023
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
  • 批准号:
    EP/X020592/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Research Grant
Moduli space of Higgs Bundles
希格斯丛集的模空间
  • 批准号:
    2742617
  • 财政年份:
    2022
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Studentship
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
  • 批准号:
    2201314
  • 财政年份:
    2022
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Continuing Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
  • 批准号:
    22K13916
  • 财政年份:
    2022
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
  • 批准号:
    RGPIN-2018-04887
  • 财政年份:
    2022
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Discovery Grants Program - Individual
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
使用超级黎曼曲面的黎曼曲面模空间上的复解析不变量
  • 批准号:
    21K03239
  • 财政年份:
    2021
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
  • 批准号:
    RGPIN-2018-04887
  • 财政年份:
    2021
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
  • 批准号:
    20H01810
  • 财政年份:
    2020
  • 资助金额:
    $ 42.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了