New Advances on Flat Surfaces
平面的新进展
基本信息
- 批准号:2301030
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on studying flat surfaces and exploring their applications across various fields. Flat surfaces are polygons with identified pairs of parallel edges, where the vertices of a flat surface are glued to form conical singularities. Flat surfaces provide a valuable framework for investigating the intricate connections between geometry, dynamics, and algebraic structures. The understanding of flat surfaces has already led to notable discoveries about space volumes and billiard trajectories. The principal investigator is dedicated to advancing knowledge in this area by continuing his research efforts and achieving new results in the study of flat surfaces. This project will also create many opportunities for students and postdoctoral scholars. Alongside his research, the principal investigator will engage in mentoring students, organizing workshops, and participating in outreach activities. A key focus will be on fostering diversity within the field and preparing the next generation of scientists for future challenges and opportunities.Flat surfaces correspond to differential forms on Riemann surfaces, where the conical singularities of a flat surface correspond to the zeros of a differential. These equivalent yet distinct descriptions make flat surfaces lie at the interface of many fields as a research hotspot. This project will cover various focal points in the study of flat surfaces, including dynamical invariants, intersection theory, residue theory, birational geometry, compactification, Brill-Noether theory, topology, cycle classes, higher differentials, and affine structures. To address the complex challenges associated with these areas, the principal investigator will employ a combination of techniques from algebraic geometry, analytic geometry, dynamics, and enumerative geometry. By utilizing these diverse methodologies, the principal investigator will comprehensively analyze different types of flat surface structures to gain insights into their geometric properties. These flat surface structures will serve as valuable tools for deepening our understanding of fundamental mathematical concepts and uncovering new avenues of research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目主要研究平面并探索其在各个领域的应用。平面是具有确定的平行边对的多边形,其中平面的顶点被粘合以形成锥形奇点。平面为研究几何、动力学和代数结构之间的复杂联系提供了一个有价值的框架。对平面的理解已经导致了关于空间体积和台球轨迹的重大发现。首席研究员致力于通过继续他的研究工作来推进这一领域的知识,并在平面研究中取得新的成果。该项目也将为学生和博士后学者创造很多机会。除了他的研究,首席研究员将参与指导学生,组织研讨会,并参加外展活动。一个关键的重点将是促进该领域内的多样性,并为下一代科学家应对未来的挑战和机遇做好准备。平面对应黎曼曲面上的微分形式,其中平面的圆锥奇点对应微分的零点。这些等价而又截然不同的描述使得平面处于多个领域的交界面成为研究热点。本课题将涵盖平面研究的多个焦点,包括动力学不变量、交理论、残数理论、双空间几何、紧化、brir - noether理论、拓扑学、循环类、高阶微分和仿射结构。为了解决与这些领域相关的复杂挑战,首席研究员将采用代数几何、解析几何、动力学和枚举几何等技术的组合。通过使用这些不同的方法,首席研究员将全面分析不同类型的平面结构,以深入了解其几何特性。这些平面结构将作为加深我们对基本数学概念的理解和发现新的研究途径的宝贵工具。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dawei Chen其他文献
Numerical simulation study on the coupling mechanism of composite-source airflow–dust field in a fully mechanized caving face
综放工作面复合源气流与粉尘场耦合机理数值模拟研究
- DOI:
10.1016/j.powtec.2019.08.048 - 发表时间:
2019-11 - 期刊:
- 影响因子:5.2
- 作者:
Zihao Xiu;Wen Nie;Dawei Chen;Jiayi Yan;Qiang Liu;Cunhou Wei - 通讯作者:
Cunhou Wei
Efficient oxidation of p-xylene to terephthalic acid by using N,N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate
使用 N,N-二羟基均苯四酰亚胺与苯三羧酸酯联用有效氧化对二甲苯生成对苯二甲酸
- DOI:
10.1016/j.apcata.2020.117569 - 发表时间:
2020-06 - 期刊:
- 影响因子:0
- 作者:
Luo Xu;Dawei Chen;Haoran Jiang;Xia Yuan - 通讯作者:
Xia Yuan
Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria
金属液滴撞击干燥光滑壁的动态行为:SPH 模拟和飞溅准则
- DOI:
10.1016/j.euromechflu.2021.01.013 - 发表时间:
2021-07 - 期刊:
- 影响因子:0
- 作者:
Tianyu Ma;Dawei Chen;Haiquan Sun;Dongjun Ma;Aiguo Xu;Pei Wang - 通讯作者:
Pei Wang
Biocatalytic Bis-C-alkylation of Phenolics using One-pot Cascades with Promiscuous C-Glycosyltransferase and Prenyltransferase
使用混杂 C-糖基转移酶和异戊二烯基转移酶的一锅级联对酚类进行生物催化双-C-烷基化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Dawei Chen;Lili Sun;Ridao Chen;Kebo Xie;Lin Yang;Jungui Dai - 通讯作者:
Jungui Dai
AFFINE GEOMETRY OF STRATA OF DIFFERENTIALS
微分层的仿射几何
- DOI:
10.1017/s1474748017000445 - 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Dawei Chen - 通讯作者:
Dawei Chen
Dawei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dawei Chen', 18)}}的其他基金
CAREER: Moduli Space of Curves and Teichmueller Dynamics
职业:曲线模空间和 Teichmueller 动力学
- 批准号:
1350396 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
- 批准号:
1101153 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Geometry of Moduli Spaces and Applications
模空间几何及其应用
- 批准号:
1200329 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
- 批准号:
2349452 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
- 批准号:
2340176 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant














{{item.name}}会员




