Topics in the theory of random Schrodinger operators

随机薛定谔算子理论的主题

基本信息

  • 批准号:
    1103104
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

One- and many-particle random operators describe the interaction of electrons and acoustic waves with randomly perturbed media. The primary example is the propagation of electrons in a crystal with impurities. The impurities are modeled by a random process and the expectations of observable quantities, such as diffusivity, conductivity, and the density of states, represent the average over these quantities over many measurements. Several models are studied: the impurities may be located at the lattice points of the crystal representing alloy-type models, or they may be localized at interstitial sites whose location is given by a Poisson process. In a perfect crystal, the electrons propagate freely provided their energies lay in fixed energy bands determined by the crystalline structure. The spectrum is absolutely continuous and the conductivity is infinite. The addition of random impurities changes this description. If the disorder is sufficiently large, all electron states are localized in space and the conductivity is zero. At weak disorder, and in dimensions greater than two, it is believed that there is finite conductivity at certain energies, whereas there are localized states at other energies near the edges of the bands. This is an open conjecture and one of the main motivations for the proposed research. The main projects of this proposal concern spectral and transport aspects of random one- and many-body random Schrodinger operators. The regularity of the density of states and higher-order correlation functions, including the conductivity measure and the inter-band light absorption coefficients, will be thoroughly investigated. The behavior of these quantities in the weak disorder regime is particularly interesting. Very little is known for even the simplest correlation functions, such as the density of states. The dynamical properties of random Schrodinger operators are also manifest in the spectral statistics of various models. For many one-particle Schrodinger operators, the local spectral statistics in the disorder regime is Poissonian. This is expected for many-particle Schrodinger operators and is part of the proposed research. The propagation of electrons and waves in random media is a hallmark of the physical world. Random impurities in semiconductors impact the electronic properties of these devices. Although the one-electron model is a good description of many phenomena, a complete picture requires the use of multi-particle Schrodinger operators. The behavior of these random models is just beginning to be studied and is one of the components of this research proposal. The investigator, together with several doctoral students at the University of Kentucky, will investigate transport and spectral phenomena of several random models. One of the main goals is to understand correlations between various particles and how the disorder influences them.
单粒子随机操作员描述了电子和声波与随机扰动介质的相互作用。主要的例子是电子在具有杂质的晶体中的传播。杂质以随机过程和可观察量的期望为模型,例如扩散率,电导率和状态的密度,代表了这些数量超过许多测量值的平均值。研究了几种型号:杂质可能位于代表合金型型号的晶体的晶格点,或者它们可以定位在泊松过程给定位置的间隙位点。在完美的晶体中,电子传播的能量在由晶体结构确定的固定能带中。频谱绝对连续,电导率是无限的。随机杂质的添加改变了此描述。如果该疾病足够大,所有电子状态都位于空间中,电导率为零。在弱混乱症和大于两个的维度下,人们认为某些能量有限的电导率,而频带边缘附近的其他能量处有局部状态。这是一个开放的猜想,也是拟议研究的主要动机之一。 该提案的主要项目涉及随机单体和多体随机施罗宾格运营商的频谱和运输方面。状态密度和高阶相关函数的规律性(包括电导率度量和带间光吸收系数)将得到彻底研究。这些数量在弱混乱制度中的行为特别有趣。即使是最简单的相关函数,例如状态的密度,也很少闻名。随机Schrodinger操作员的动力学特性也体现在各种模型的光谱统计中。对于许多单粒子Schrodinger操作员来说,疾病制度中的局部光谱统计是泊松人。这是许多粒子施罗宾格运营商预期的,并且是拟议研究的一部分。随机媒体中电子和波浪的传播是物理世界的标志。半导体中的随机杂质会影响这些设备的电子特性。尽管单电子模型是对许多现象的良好描述,但完整的图片需要使用多粒子Schrodinger操作员。这些随机模型的行为才刚刚开始研究,是该研究建议的组成部分之一。研究人员与肯塔基大学的几位博士生一起,将研究几种随机模型的运输和光谱现象。主要目标之一是了解各种粒子与疾病如何影响它们之间的相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Hislop其他文献

RENORMALIZATION GROUP APPROACH IN SPECTRAL ANALYSIS AND PROBLEM OF RADIATION
光谱分析中的重正化群方法和辐射问题
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Sigal;J. Fröhlich;Volodya Buslaev;Stephen Gustafson;Peter Hislop;Walter Hunziker;M. Merkli;Yuri Ovchinnikov
  • 通讯作者:
    Yuri Ovchinnikov

Peter Hislop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Hislop', 18)}}的其他基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Ohio River Analysis Meetings 2020-2022
俄亥俄河分析会议 2020-2022
  • 批准号:
    2000250
  • 财政年份:
    2020
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Collaborative research: Ohio River Analysis Meetings 2017-2019
合作研究:2017-2019 年俄亥俄河分析会议
  • 批准号:
    1700277
  • 财政年份:
    2017
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Collaborative research: Ohio River Analysis Meetings 2014-2016
合作研究:2014-2016 年俄亥俄河分析会议
  • 批准号:
    1412057
  • 财政年份:
    2014
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Young researcher support for XVIIth International Conf. on Math. Phys. Aalborg, DK August 2012
年轻研究员对第十七届国际会议的支持。
  • 批准号:
    1201297
  • 财政年份:
    2012
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Correlations and Transport for Random Schrodinger Operators
随机薛定谔算子的相关性和传输
  • 批准号:
    0803379
  • 财政年份:
    2008
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Pan-American Advanced Studies Institute on Analysis and Probability in Quantum Physics; Santiago, Chile; July 2006
泛美量子物理分析与概率高级研究所;
  • 批准号:
    0519108
  • 财政年份:
    2005
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Challenges in the Theory of Random Schrodinger Operators
随机薛定谔算子理论的挑战
  • 批准号:
    0503784
  • 财政年份:
    2005
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Spectral and Transport Properties of Random Media
随机介质的光谱和传输特性
  • 批准号:
    0202656
  • 财政年份:
    2002
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
U.S.-Sweden Workshop: Partial Differential Equations and Spectral Theory
美国-瑞典研讨会:偏微分方程和谱理论
  • 批准号:
    0204308
  • 财政年份:
    2002
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant

相似国自然基金

面向新一代分布式物联网的随机接入系统理论与关键技术研究
  • 批准号:
    62371363
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
随机矩阵理论与深度学习的智能配电网故障感知方法研究
  • 批准号:
    62302034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耗散加强理论在非线性系统与随机抽样中的应用
  • 批准号:
    12301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
扭曲风险度量随机化的理论和应用
  • 批准号:
    12301598
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Representation theory, random matrices, and related topics
表示论、随机矩阵和相关主题
  • 批准号:
    25800062
  • 财政年份:
    2013
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Topics in the Spectral Theory of Random Operators and in Statistical Mechanics
随机算子谱理论和统计力学主题
  • 批准号:
    1305472
  • 财政年份:
    2013
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Topics in random matrix theory and spectral theory of operators on Riemannian manifolds.
随机矩阵理论和黎曼流形算子谱理论的主题。
  • 批准号:
    EP/H023127/1
  • 财政年份:
    2009
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Research Grant
Topics in Operator Theory with Applications to Random Matrices
算子理论及其在随机矩阵中的应用主题
  • 批准号:
    0901434
  • 财政年份:
    2009
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Random Solids and Other Topics in Condensed Matter Theory
随机固体和凝聚态理论中的其他主题
  • 批准号:
    9975187
  • 财政年份:
    1999
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了