Challenges in the Theory of Random Schrodinger Operators
随机薛定谔算子理论的挑战
基本信息
- 批准号:0503784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Challenges in the theory of random Schrodinger operatorsPeter D. HislopUniversity of KentuckyAbstractThe spectral and transport properties of random Schrodinger operators have been the object of intense study. Anderson localization, the occurrence of dense pure point spectrum almost surely, has been proved for many models at band-edges and at the bottom of the spectrum. Refined estimates give precise information about the decay of the eigenfucntions and the dynamical localization of the system. Conductivity properties of the system are described through the second-order current-current correlation function.Study of these correlation functions reveal information about Mott conductivity, the density of states, and eigenvalue statistics. There are many open questions about the regularity and bounds on these functions. A lower bound on the current-current correlation function implies delocalization, for example. Another new tool for the study of these systems is the use of random matrix theory. This promises to give insight into the density of states in the delocalized regime.Random Schrodinger operators provide a model for the propagation of electrons in perfect crystalline structures that are corrupted by impurities randomly distributed in the medium. It is hoped that the study of these models reveals the mechanisms for finite conductivity at low temperatures and the integer quantum Hall effect. New advances allow one to investigate the transport properties of these models as expressed through correlation functions. These correlations functions describe physically measurable quantities such as the density of states and the Mott conductivity.
随机薛定谔算子理论的挑战。随机薛定谔算符的谱和输运性质一直是人们深入研究的对象。安德森局域化,即稠密纯点谱的出现几乎是必然的,已被证明在许多模型的带边和谱底。精化的估计给出了关于系统的本征函数的衰减和动力学局部化的精确信息。通过二阶电流-电流关联函数描述了系统的电导率特性,研究这些关联函数可以揭示系统的Mott电导率、态密度和本征值统计等信息。关于这些函数的规律性和界限还有许多悬而未决的问题。例如,电流-电流相关函数的下限意味着离域。研究这些系统的另一个新工具是使用随机矩阵理论。随机薛定谔算符提供了一个模型,用于描述电子在被介质中随机分布的杂质破坏的完美晶体结构中的传播。这些模型的研究有望揭示低温下有限电导率和整数量子霍尔效应的机制。新的进展允许一个调查这些模型的传输特性表示通过相关函数。这些相关函数描述了物理上可测量的量,例如态密度和莫特电导率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Hislop其他文献
RENORMALIZATION GROUP APPROACH IN SPECTRAL ANALYSIS AND PROBLEM OF RADIATION
光谱分析中的重正化群方法和辐射问题
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Sigal;J. Fröhlich;Volodya Buslaev;Stephen Gustafson;Peter Hislop;Walter Hunziker;M. Merkli;Yuri Ovchinnikov - 通讯作者:
Yuri Ovchinnikov
Peter Hislop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Hislop', 18)}}的其他基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Ohio River Analysis Meetings 2020-2022
俄亥俄河分析会议 2020-2022
- 批准号:
2000250 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative research: Ohio River Analysis Meetings 2017-2019
合作研究:2017-2019 年俄亥俄河分析会议
- 批准号:
1700277 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative research: Ohio River Analysis Meetings 2014-2016
合作研究:2014-2016 年俄亥俄河分析会议
- 批准号:
1412057 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Young researcher support for XVIIth International Conf. on Math. Phys. Aalborg, DK August 2012
年轻研究员对第十七届国际会议的支持。
- 批准号:
1201297 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in the theory of random Schrodinger operators
随机薛定谔算子理论的主题
- 批准号:
1103104 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Correlations and Transport for Random Schrodinger Operators
随机薛定谔算子的相关性和传输
- 批准号:
0803379 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Pan-American Advanced Studies Institute on Analysis and Probability in Quantum Physics; Santiago, Chile; July 2006
泛美量子物理分析与概率高级研究所;
- 批准号:
0519108 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Spectral and Transport Properties of Random Media
随机介质的光谱和传输特性
- 批准号:
0202656 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-Sweden Workshop: Partial Differential Equations and Spectral Theory
美国-瑞典研讨会:偏微分方程和谱理论
- 批准号:
0204308 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
- 批准号:
24K06766 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
New perspectives in contract theory: Optimal incentives for interacting agents in a common random environment
契约理论的新视角:共同随机环境中交互主体的最优激励
- 批准号:
2307736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Non-Asymptotic Random Matrix Theory and Connections
职业:非渐近随机矩阵理论和联系
- 批准号:
2237646 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-invasive neurosurgical planning with Random Matrix Theory MRI
利用随机矩阵理论 MRI 进行无创神经外科规划
- 批准号:
10541655 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
- 批准号:
RGPIN-2019-04888 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Pluripotential Theory and Random Geometry on Compact Complex Manifolds
紧复流形上的多势理论和随机几何
- 批准号:
2154273 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Analytic number theory and random matrix theory
解析数论和随机矩阵论
- 批准号:
RGPIN-2019-05037 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual