Correlations and Transport for Random Schrodinger Operators
随机薛定谔算子的相关性和传输
基本信息
- 批准号:0803379
- 负责人:
- 金额:$ 13.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns the spectral and transport properties on one-and many-particle quantum Hamiltonians with random potentials. The goal is to understand the behavior of the correlation functions for these models in the localized and transport regimes. The first-order correlation function, the density of states, has been extensively studied. One part of the project is to prove its smoothness and a lower bound on the density. Of special interest is the second-order correlation function called the current-current correlation measure. One component of the project is to prove the existence of a density for this measure and to study its properties. This is important as the diagonal values of the density give the conductivity. Other second- and higher-order correlation functions arise in the study of eigenvalue statistics for random Schrodinger operators. These correlation functions and related ones for certain random matrix models will also be explored. The integer quantum Hall effect is closely related to these ideas and the project involves a study of quantum Hall systems using nonequilibrium stationary states. The propagation of electrons in solids has long been an important focus of condensed matter physics. Quantum mechanics has been successful in providing an understanding of metals, semiconductors, and insulators. The nature of finite conductivity remains elusive. It is believed that the natural disorder of crystals, due to dislocations and defects that are observed in nature, is partially responsible for the transport properties of crystals. The focus of this research is to understand the mathematical and physical basis for finite conductivity by modeling crystals as an ordered array with random impurities. Experimentally observable quantities, such as the density of states and the conductivity, can be estimated in these models.
本文研究了具有随机势的单粒子和多粒子量子哈密顿量的光谱和输运性质。我们的目标是了解这些模型的相关函数在本地化和运输制度的行为。一阶关联函数,态密度,已经被广泛研究。该项目的一部分是证明其光滑性和密度的下限。特别感兴趣的是二阶相关函数,称为电流-电流相关测量。该项目的一个组成部分是证明这种措施的密度的存在,并研究其性质。这一点很重要,因为密度的对角线值给出了电导率。其他二阶和高阶相关函数出现在随机薛定谔算子的本征值统计研究中。这些相关函数和相关的某些随机矩阵模型也将进行探讨。整数量子霍尔效应与这些想法密切相关,该项目涉及使用非平衡定态研究量子霍尔系统。电子在固体中的传播一直是凝聚态物理研究的一个重要课题。量子力学已经成功地提供了对金属、半导体和绝缘体的理解。有限电导率的本质仍然是难以捉摸的。 据信,由于在自然界中观察到的位错和缺陷而导致的晶体的自然无序是晶体的输运性质的部分原因。本研究的重点是通过将晶体建模为具有随机杂质的有序阵列来理解有限电导率的数学和物理基础。在这些模型中,可以估计实验上可观察到的量,例如态密度和电导率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Hislop其他文献
RENORMALIZATION GROUP APPROACH IN SPECTRAL ANALYSIS AND PROBLEM OF RADIATION
光谱分析中的重正化群方法和辐射问题
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Sigal;J. Fröhlich;Volodya Buslaev;Stephen Gustafson;Peter Hislop;Walter Hunziker;M. Merkli;Yuri Ovchinnikov - 通讯作者:
Yuri Ovchinnikov
Peter Hislop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Hislop', 18)}}的其他基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Ohio River Analysis Meetings 2020-2022
俄亥俄河分析会议 2020-2022
- 批准号:
2000250 - 财政年份:2020
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Collaborative research: Ohio River Analysis Meetings 2017-2019
合作研究:2017-2019 年俄亥俄河分析会议
- 批准号:
1700277 - 财政年份:2017
- 资助金额:
$ 13.09万 - 项目类别:
Continuing Grant
Collaborative research: Ohio River Analysis Meetings 2014-2016
合作研究:2014-2016 年俄亥俄河分析会议
- 批准号:
1412057 - 财政年份:2014
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Young researcher support for XVIIth International Conf. on Math. Phys. Aalborg, DK August 2012
年轻研究员对第十七届国际会议的支持。
- 批准号:
1201297 - 财政年份:2012
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Topics in the theory of random Schrodinger operators
随机薛定谔算子理论的主题
- 批准号:
1103104 - 财政年份:2011
- 资助金额:
$ 13.09万 - 项目类别:
Continuing Grant
Pan-American Advanced Studies Institute on Analysis and Probability in Quantum Physics; Santiago, Chile; July 2006
泛美量子物理分析与概率高级研究所;
- 批准号:
0519108 - 财政年份:2005
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Challenges in the Theory of Random Schrodinger Operators
随机薛定谔算子理论的挑战
- 批准号:
0503784 - 财政年份:2005
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Spectral and Transport Properties of Random Media
随机介质的光谱和传输特性
- 批准号:
0202656 - 财政年份:2002
- 资助金额:
$ 13.09万 - 项目类别:
Continuing Grant
U.S.-Sweden Workshop: Partial Differential Equations and Spectral Theory
美国-瑞典研讨会:偏微分方程和谱理论
- 批准号:
0204308 - 财政年份:2002
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
- 批准号:31371354
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
- 批准号:30870030
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Dynamical low-rank approximation for radiation transport with random input
具有随机输入的辐射传输的动态低秩近似
- 批准号:
491976834 - 财政年份:2021
- 资助金额:
$ 13.09万 - 项目类别:
WBP Fellowship
Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
- 批准号:
2110204 - 财政年份:2021
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Market research of Quantum Random Number Generator-based encryption platform for Cooperative Intelligent Transport Systems (C-ITS)
基于量子随机数生成器的协作智能运输系统(C-ITS)加密平台的市场研究
- 批准号:
34998 - 财政年份:2019
- 资助金额:
$ 13.09万 - 项目类别:
Collaborative R&D
Integrated global random walk model for reactive transport in groundwater adapted to measurement spatio-temporal scales
适合测量时空尺度的地下水反应输运的综合全局随机游走模型
- 批准号:
405338726 - 财政年份:2018
- 资助金额:
$ 13.09万 - 项目类别:
Research Grants
EAGER: Understanding Molecular Control and Phase Behavior of Random Heteropolymer Materials for Selective Transport
EAGER:了解用于选择性传输的随机杂聚物材料的分子控制和相行为
- 批准号:
1836961 - 财政年份:2018
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Workshop on Transport and Localization in Random Media: Theory and Applications
随机媒体传输和定位研讨会:理论与应用
- 批准号:
1804339 - 财政年份:2018
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2016
- 资助金额:
$ 13.09万 - 项目类别:
Discovery Grants Program - Individual
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2015
- 资助金额:
$ 13.09万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Transport Phenomena in Quantum Systems and Random Media
职业:量子系统和随机介质中的传输现象
- 批准号:
1452349 - 财政年份:2015
- 资助金额:
$ 13.09万 - 项目类别:
Continuing Grant
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2014
- 资助金额:
$ 13.09万 - 项目类别:
Discovery Grants Program - Individual