Geometric Harmonic Analysis and Applications

几何调和分析及应用

基本信息

  • 批准号:
    1103525
  • 负责人:
  • 金额:
    $ 44.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Geometric harmonic analysis is a new chapter in geometric representation theory, in which techniques from homotopical algebra and unifying structures from topological field theory are combined to describe the decomposition of categories in the presence of symmetries. The PI proposes a variety of projects (joint with David Nadler) that further the foundations of the subject and apply it to resolve classical problems in representation theory. The most far-reaching project aims to develop a geometric analog of the Arthur-Selberg trace formula, consistently enhancing vector spaces of functions to categories of sheaves (in particular providing a natural context for the work of Ngo). Other projects seek to prove general Langlands dualities (or "nonabelian Fourier transforms") for categories of representations of real groups and for cohomologies of character varieties (conjectures of Soergel and Hausel--Rodriguez-Villegas, respectively). The PI also proposes (with Jonathan Block and Nigel Higson) to bridge two disparate approaches to harmonic analysis of Lie groups --- noncommutative algebraic geometry (D-modules and Beilinson-Bernstein localization) and noncommutative topology (C*-algebras and the Baum-Connes conjecture). The PI is highly committed to mathematical exposition at a variety of levels, and endeavors to convey the intuitions behind sophisticated mathematical ideas to a broad range of audiences. The significant educational component of the proposal builds on the PI's experience and enthusiasm as an expositor.The Langlands program is one of the fundamental organizing principles in modern mathematics, predicting that diverse phenomena can be understood by the systematic exploitation of hidden symmetries. Among its successes in number theory are the solution of Fermat's Last Theorem, while in physics it underlies the symmetry between electricity and magnetism and its theoretical generalizations to other fundamental forces. Recently Ngo proved the Langlands Fundamental Lemma, one of Time Magazine's Top Ten Scientific Discoveries of 2009. This proof suggests a new link between the apparently unrelated number theoretic and physical settings for the Langlands program. The current proposal is aimed at developing these connections, finding physical analogues of classical results in number theory while using the rich geometric intuition behind the physics to suggest new patterns in the application of symmetries. An important component is the dissemination of the exciting but often inaccessible developments in this field through development of online resources, lecture series, books and courses.
几何调和分析是几何表示论的一个新的篇章,其中同伦代数的技术和拓扑场论的统一结构相结合,描述了对称性存在时范畴的分解。PI提出了各种各样的项目(与大卫纳德勒联合),进一步巩固了这一学科的基础,并将其应用于解决表示论中的经典问题。最深远的项目旨在开发阿瑟-塞尔伯格迹公式的几何模拟,不断增强向量空间的功能,以类别的层(特别是提供一个自然的背景下,Ngo的工作)。其他项目试图证明一般朗兰兹对偶(或“非阿贝尔傅立叶变换”)的类别表示的真实的群体和上同调的字符品种(abutures的Soergel和Hausel-罗德里格斯-Villegas,分别)。PI还建议(与Jonathan Block和奈杰尔希格森)桥接李群调和分析的两种不同方法-非交换代数几何(D-模和Beilinson-Bernstein局部化)和非交换拓扑(C*-代数和Baum-Connes猜想)。PI高度致力于各种层次的数学阐述,并努力将复杂的数学思想背后的直觉传达给广泛的受众。 该计划的重要教育部分建立在PI作为评审员的经验和热情之上。朗兰兹纲领是现代数学的基本组织原则之一,它预言通过系统地利用隐藏的对称性可以理解各种现象。它在数论中的成功之处在于解决了费马大定理,而在物理学中,它是电和磁之间的对称性及其对其他基本力的理论概括的基础。最近Ngo证明了朗兰兹基本引理,这是时代杂志2009年十大科学发现之一。这一证明表明了朗兰兹纲领的数论和物理设置之间明显不相关的新联系。目前的提议旨在发展这些联系,找到数论中经典结果的物理类似物,同时利用物理学背后丰富的几何直觉来提出对称性应用的新模式。一个重要的组成部分是通过开发在线资源、系列讲座、书籍和课程,传播这一领域令人兴奋但往往无法获得的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ben-Zvi其他文献

Wonderful asymptotics of matrix coefficient emD/em-modules
矩阵系数 emD/em-模的美妙渐近性
  • DOI:
    10.1016/j.aim.2022.108578
  • 发表时间:
    2022-10-29
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    David Ben-Zvi;Iordan Ganev
  • 通讯作者:
    Iordan Ganev

David Ben-Zvi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ben-Zvi', 18)}}的其他基金

L-functions via geometric quantization
通过几何量化的 L 函数
  • 批准号:
    2302346
  • 财政年份:
    2023
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
  • 批准号:
    2001398
  • 财政年份:
    2020
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Geometric Aspects of Field Theories and Lattice Models
场论和晶格模型的几何方面
  • 批准号:
    2005286
  • 财政年份:
    2020
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Symplectic Representation Theory
辛表示论
  • 批准号:
    1906141
  • 财政年份:
    2019
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
Representation Theory as Gauge Theory
作为规范理论的表示论
  • 批准号:
    1705110
  • 财政年份:
    2017
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Abelianization of Connections in Two and Three Dimensions
二维和三维连接的阿贝尔化
  • 批准号:
    1711692
  • 财政年份:
    2017
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Noncommutative and Hamiltonian geometry, symplectic resolutions, and D-modules
非交换几何和哈密顿几何、辛分辨率和 D 模
  • 批准号:
    1406553
  • 财政年份:
    2014
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
The local Langlands correspondence in l-adic families
l-adic 家族中当地朗兰兹的对应
  • 批准号:
    1161582
  • 财政年份:
    2012
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
CAREER: Representation Theory on Curves
职业:曲线表示论
  • 批准号:
    0449830
  • 财政年份:
    2005
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Difference Operators and Real Bundles
差分算子和实丛的代数几何
  • 批准号:
    0401448
  • 财政年份:
    2004
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2022
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2021
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
  • 批准号:
    2054602
  • 财政年份:
    2021
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2020
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
  • 批准号:
    20KK0057
  • 财政年份:
    2020
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
  • 批准号:
    1854831
  • 财政年份:
    2019
  • 资助金额:
    $ 44.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了