Abelianization of Connections in Two and Three Dimensions

二维和三维连接的阿贝尔化

基本信息

  • 批准号:
    1711692
  • 负责人:
  • 金额:
    $ 33.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The PI studies problems of geometry using methods imported from particle physics. In joint work with his collaborators, he has recently developed a new geometric technique of "abelianization" -- so called because it reduces nonabelian problems (involving operations for which the order in which we do the operations matters) to simpler abelian ones (where the order does not matter). The PI, together with his collaborators and graduate students, will work on several new applications of abelianization. One application is a new approach to solving certain differential equations, including the Schrodinger equation which governs the physics of some quantum systems. A second application is a new way of measuring the topology of 3-dimensional spaces. The results of this work will be disseminated broadly both in the mathematics and high-energy physics communities, helping to bring these two areas closer together. The work will also contribute to the training of graduate students in both fields.The PI's recent joint work with collaborators introduced a new ingredient to the theory of flat connections: a way of "abelianizing" flat connections on a rank N complex vector bundle over a surface, replacing them by almost-flat connections on a line bundle over an N-fold branched covering surface. The full scope of this new theory is not yet known: it appears that there are many more uses of abelianization yet to be discovered. The PI aims to develop some of these. First, he will study a family of special connections on surfaces called "opers," which can be abelianized in a canonical way. On the one hand, this is a warmup for the abelianization of the twistor lines in the Hitchin system. On the other hand, it gives a new way of understanding the locus of opers and thus a new perspective on many related issues, from the classical theory of linear scalar differential operators to nonperturbative extensions of topological string theory. Second, he will consider abelianization on a 3-manifold instead of a surface. One immediate application is the development of new formulas for classical complex Chern-Simons invariants. Third, the PI aims to develop a new relation between abelianization and Floer theory on cotangent bundles.
PI使用从粒子物理学引入的方法研究几何问题。在与他的合作者的联合工作中,他最近开发了一种新的几何技术“阿贝尔化”-所谓的,因为它减少了nonabelian问题(涉及操作的顺序,我们做的操作事项),以更简单的阿贝尔的(顺序无关紧要)。PI与他的合作者和研究生一起,将致力于阿贝尔化的几个新应用。一个应用是一种新的方法来解决某些微分方程,包括薛定谔方程,它控制着一些量子系统的物理。第二个应用是测量三维空间拓扑的新方法。这项工作的结果将在数学和高能物理界广泛传播,有助于使这两个领域更加紧密地联系在一起。PI最近与合作者的联合工作为平坦连接理论引入了一个新的成分:一种将曲面上秩为N的复向量丛上的平坦连接“阿贝尔化”的方法,将其替换为N重分支覆盖曲面上的线束上的几乎平坦连接。这个新理论的全部范围还不为人所知:似乎还有更多的阿贝尔化的用途有待发现。PI的目标是开发其中的一些。 首先,他将研究曲面上的一类特殊连接,称为“opers”,可以用规范的方式进行阿贝尔化。 一方面,这是希钦系统扭量线阿贝尔化的一个热身。另一方面,它提供了一种新的方式来理解opers的轨迹,从而对许多相关的问题,从线性标量微分算子的经典理论的拓扑弦理论的非微扰扩展的新视角。第二,他将考虑3流形上的阿贝尔化而不是曲面。一个直接的应用是发展新的公式为经典复杂的陈-西蒙斯不变量。第三,PI的目的是发展一个新的关系abelianization和Floer理论的余切丛。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ben-Zvi其他文献

Wonderful asymptotics of matrix coefficient emD/em-modules
矩阵系数 emD/em-模的美妙渐近性
  • DOI:
    10.1016/j.aim.2022.108578
  • 发表时间:
    2022-10-29
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    David Ben-Zvi;Iordan Ganev
  • 通讯作者:
    Iordan Ganev

David Ben-Zvi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ben-Zvi', 18)}}的其他基金

L-functions via geometric quantization
通过几何量化的 L 函数
  • 批准号:
    2302346
  • 财政年份:
    2023
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
  • 批准号:
    2001398
  • 财政年份:
    2020
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
Geometric Aspects of Field Theories and Lattice Models
场论和晶格模型的几何方面
  • 批准号:
    2005286
  • 财政年份:
    2020
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
Symplectic Representation Theory
辛表示论
  • 批准号:
    1906141
  • 财政年份:
    2019
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Representation Theory as Gauge Theory
作为规范理论的表示论
  • 批准号:
    1705110
  • 财政年份:
    2017
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
Noncommutative and Hamiltonian geometry, symplectic resolutions, and D-modules
非交换几何和哈密顿几何、辛分辨率和 D 模
  • 批准号:
    1406553
  • 财政年份:
    2014
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
The local Langlands correspondence in l-adic families
l-adic 家族中当地朗兰兹的对应
  • 批准号:
    1161582
  • 财政年份:
    2012
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis and Applications
几何调和分析及应用
  • 批准号:
    1103525
  • 财政年份:
    2011
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Continuing Grant
CAREER: Representation Theory on Curves
职业:曲线表示论
  • 批准号:
    0449830
  • 财政年份:
    2005
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Difference Operators and Real Bundles
差分算子和实丛的代数几何
  • 批准号:
    0401448
  • 财政年份:
    2004
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350344
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Dissecting Claustrum Neuronal Connections for Sleepiness
剖析幽状体神经元与睡意的连接
  • 批准号:
    24K09680
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350343
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402571
  • 财政年份:
    2024
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Conference: Prosodic and psycholinguistic connections in verb-initial languages
会议:动词首字母语言中的韵律和心理语言学联系
  • 批准号:
    2314322
  • 财政年份:
    2023
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Conference: Trisections Workshop: Connections with Symplectic Topology
会议:三等分研讨会:与辛拓扑的联系
  • 批准号:
    2308782
  • 财政年份:
    2023
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
  • 批准号:
    2332817
  • 财政年份:
    2023
  • 资助金额:
    $ 33.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了