Geometric Aspects of Field Theories and Lattice Models

场论和晶格模型的几何方面

基本信息

  • 批准号:
    2005286
  • 负责人:
  • 金额:
    $ 42.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

These research projects form part of an ongoing vigorous interaction between geometry and theoretical physics. The engagement of mathematics with other sciences, and of science with mathematics, is a continual source of fruitful ideas with long-term beneficial consequences for society. We can measure these consequences by looking backwards: our current technology and economy rely on the foundation of basic research from past decades and centuries. The mixing of different disciplines is mutually beneficial. As a mathematician the PI has a particular goal to bring structures and intuitions from physics into mathematics. The research has many facets designed to do just that. Specifically, we will work on foundational issues in geometric formulations of quantum field theory. The projects are a mix of specific problems and general structural investigations. The techniques are mathematical, often with inspiration from physics. This work has ramifications for pure geometry as well as applications to questions in physics, such as classification of phases of matter. This award supports graduate students working with the PI participate in some of these projects, and they also carry out their own separate projects within this broad field.We work within the Axiom System for field theories initiated by Segal and Atiyah in the 1980s. These geometric axioms have been refined and extended in many directions since, and we seek to continue this process. For example, the usual axioms evaluate a theory on a single manifold or bordism, whereas many computations involve evaluation on a family of manifolds, the axiomatics of which we will investigate further. In some ways a field theory is akin to a representation of a Lie group. In Lie theory unitary structures play a prominent role, and so too does unitarity in ordinary quantum field theory. While the geometric axioms, especially for topological field theories, include locality in a strong form, there is no corresponding extended notion of unitarity. This is an area we will investigate further. Other aspects of general theory to pursue relate to non-topological invertible field theories and theories which are topological modulo invertible theories. This project also has several lines of inquiry related to specific theories. For example, we have a plan to construct three-dimensional topological Chern-Simons theory as a fully extended theory. We also aim to investigate dynamics in a geometric incarnation of the two-dimensional Ising model. Finally, we aim to construct lattice models which correspond to invertible field theories, part of a larger effort to develop a geometric theory of discrete models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这些研究项目构成了几何学和理论物理学之间正在进行的有力互动的一部分。数学与其他科学的结合,以及科学与数学的结合,可以源源不断地产生丰富的思想,对社会产生长期的有益影响。我们可以通过回顾过去来衡量这些后果:我们目前的技术和经济依赖于过去几十年和几个世纪的基础研究。不同学科的融合是互利的。作为一名数学家,PI有一个特殊的目标,那就是将物理学的结构和直觉带入数学。这项研究有很多方面的设计就是为了做到这一点。具体地说,我们将致力于量子场论几何公式中的基本问题。这些项目既有具体的问题,也有一般性的结构调查。这些技术是数学的,通常受到物理学的启发。这项工作对纯几何以及对物理问题的应用都有影响,例如物质相的分类。该奖项支持与PI一起工作的研究生参与其中的一些项目,他们也在这个广阔的领域内开展自己的单独项目。我们在由西格尔和阿提亚在20世纪80年代发起的领域理论公理体系内工作。自那以后,这些几何公理在许多方向上得到了改进和扩展,我们寻求继续这一过程。例如,通常的公理评估单个流形或边界论上的理论,而许多计算涉及到对一族流形的评估,我们将进一步研究其公理。在某些方面,场论类似于李群的表示。在李理论中,么正结构起着突出的作用,在普通量子场论中,么正结构也是如此。虽然几何公理,特别是拓扑场论的几何公理,包括强形式的局部性,但没有相应的扩展的么正概念。这是我们将进一步调查的一个领域。一般理论的其他方面涉及非拓扑可逆场理论和拓扑模可逆理论。这个项目也有几条与特定理论相关的探究路线。例如,我们计划将三维拓扑Chern-Simons理论构建为一个完全扩展的理论。我们还旨在研究二维伊辛模型的几何化身中的动力学。最后,我们的目标是构建与可逆场理论相对应的格子模型,这是开发离散模型几何理论的更大努力的一部分。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The dilogarithm and abelian Chern–Simons
双对数和阿贝尔切尔纳·西蒙斯
  • DOI:
    10.4310/jdg/1680883577
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Freed, Daniel S.;Neitzke, Andrew
  • 通讯作者:
    Neitzke, Andrew
Gapped Boundary Theories in Three Dimensions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ben-Zvi其他文献

Wonderful asymptotics of matrix coefficient emD/em-modules
矩阵系数 emD/em-模的美妙渐近性
  • DOI:
    10.1016/j.aim.2022.108578
  • 发表时间:
    2022-10-29
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    David Ben-Zvi;Iordan Ganev
  • 通讯作者:
    Iordan Ganev

David Ben-Zvi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ben-Zvi', 18)}}的其他基金

L-functions via geometric quantization
通过几何量化的 L 函数
  • 批准号:
    2302346
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
  • 批准号:
    2001398
  • 财政年份:
    2020
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
Symplectic Representation Theory
辛表示论
  • 批准号:
    1906141
  • 财政年份:
    2019
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Standard Grant
Representation Theory as Gauge Theory
作为规范理论的表示论
  • 批准号:
    1705110
  • 财政年份:
    2017
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
Abelianization of Connections in Two and Three Dimensions
二维和三维连接的阿贝尔化
  • 批准号:
    1711692
  • 财政年份:
    2017
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
Noncommutative and Hamiltonian geometry, symplectic resolutions, and D-modules
非交换几何和哈密顿几何、辛分辨率和 D 模
  • 批准号:
    1406553
  • 财政年份:
    2014
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
The local Langlands correspondence in l-adic families
l-adic 家族中当地朗兰兹的对应
  • 批准号:
    1161582
  • 财政年份:
    2012
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis and Applications
几何调和分析及应用
  • 批准号:
    1103525
  • 财政年份:
    2011
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
CAREER: Representation Theory on Curves
职业:曲线表示论
  • 批准号:
    0449830
  • 财政年份:
    2005
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Difference Operators and Real Bundles
差分算子和实丛的代数几何
  • 批准号:
    0401448
  • 财政年份:
    2004
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The research topics will be several mathematical aspects of superstring theory and quantum field theory.
研究主题将是超弦理论和量子场论的几个数学方面。
  • 批准号:
    2590918
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
Aspects of Exceptional Field theories
特殊场论的各个方面
  • 批准号:
    2625188
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
  • 批准号:
    21J14825
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-perturbative aspects of quantum field theories from integrability
量子场论的可积性的非微扰方面
  • 批准号:
    20J10126
  • 财政年份:
    2020
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Field-theoretical aspects of Brout-Englert-Higgs physics
布劳特-恩格勒特-希格斯物理学的场论方面
  • 批准号:
    415504349
  • 财政年份:
    2018
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Research Fellowships
Non-classical and non-Hermitian aspects of electron-electron correlation in strong-field physics
强场物理中电子-电子关联的非经典和非厄米方面
  • 批准号:
    2117785
  • 财政年份:
    2018
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
Aspects of the String Theory/Gauge field theory duality
弦理论/规范场论对偶性的各个方面
  • 批准号:
    2181193
  • 财政年份:
    2018
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
Topological aspects of lattice field theory in 2 dimensions
二维格场论的拓扑方面
  • 批准号:
    1941778
  • 财政年份:
    2017
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
Non-Perturbative Aspects of Quantum Field Theory and Gravity
量子场论和引力的非微扰方面
  • 批准号:
    1620542
  • 财政年份:
    2016
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Continuing Grant
Aspects of Double Field Theory and Exceptional Field Theory
双场论和例外场论的方面
  • 批准号:
    1783495
  • 财政年份:
    2016
  • 资助金额:
    $ 42.9万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了