CAREER: Representation Theory on Curves
职业:曲线表示论
基本信息
- 批准号:0449830
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The geometric Langlands program proposes an extraordinary analog of harmonic analysis in the algebraic geometry of bundles on curves, inspired by the Langlands philosophy which binds harmonic analysis and Galois theory over number fields. In this geometric harmonic analysis, function spaces are replaced with categories of sheaves, and the spectral theory of operators on these sheaves is analyzed using geometric Fourier transforms. The investigator is developing applications of these cutting edge ideas to classical questions in representation theory. In particular, in collaboration with D. Nadler, he proposes an enhancement of the geometric Langlands program which performs a spectral decomposition of the categories of representations of real Lie groups. This significantly enhances the Langlands classification of irreducible representations (part of the classical Langlands program) and binds it to the geometric (Borel-Weil) realizations of representations. The investigator also spearheads efforts to make this material available to a far broader audience, in particular through the organization of GRASP (Geometry Representations and Some Physics), electronically distributed expository lecture series on the fundamental ideas and underlying currents in this rapidly developing area.A fundamental theme of modern mathematics is the exploitation of symmetry as an organizing principle, linking diverse and potentially baffling phenomena in an elegant overarching framework. Perhaps the prime example of this trend is the Langlands program, which identifies a general pattern in the appearance of symmetry in algebra and number theory, and counts among its successes the solution of Fermat's Last Theorem. In recent years, a new geometric setting for the applicationof the Langlands philosophy has emerged, which makes contact with new symmetry principles, in particular those underlying the exciting developments of string theory in physics. My CAREER proposal is aimed at advancing this geometric Langlands program in two ways. First, the GRASP (Geometry Representations And Some Physics) program will provide an electronic resource center for students interested in this exciting and varied but potentially intimidating and inaccessible area. At the center of GRASP is a series of expository lectures introducing the fundamental concepts underlying and relating to the Langlands program to a wide audience, via the web. In parallel, the research component of the proposal develops a novel program to apply the cutting edge geometric Langlands technology to more classical problems in algebra. In particular I expect these ideas to have a significant impact on the classification of symmetries arising in linear algebra with real numbers, a question with a distinguished history and origins in quantum mechanics.
几何朗兰兹计划提出了一个非凡的模拟调和分析的代数几何束的曲线,灵感来自朗兰兹哲学,其中结合调和分析和伽罗瓦理论的一些领域。在这个几何调和分析中,函数空间被替换为层的范畴,并且使用几何傅立叶变换分析这些层上的算子的谱理论。 研究人员正在开发应用这些前沿思想的经典问题表示论。特别是,与D。纳德勒,他提出了一个增强的几何朗兰兹计划,执行光谱分解的类别表示的真实的李群。这显著增强了不可约表示的朗兰兹分类(经典朗兰兹程序的一部分),并将其与表示的几何(Borel-Weil)实现绑定。 调查员还带头努力,特别是通过大型类人猿生存项目的组织,向更广泛的受众提供这些材料(几何表示和一些物理学),电子分发的基本思想和基本电流在这个迅速发展的领域的讲座系列。现代数学的一个基本主题是利用对称性作为一个组织原则,在一个优雅的总体框架中将各种可能令人困惑的现象联系起来。也许这种趋势的最好例子是朗兰兹纲领,它确定了代数和数论中对称性出现的一般模式,并将费马大定理的解算在其成功之列。近年来,朗兰兹哲学的应用出现了一种新的几何背景,它与新的对称性原理,特别是那些支撑物理学中令人兴奋的弦理论发展的对称性原理相联系。 我的职业建议旨在从两个方面推进几何朗兰兹纲领。 首先,GRASP(几何表示和一些物理)计划将为对这个令人兴奋和多样化但可能令人生畏和难以进入的领域感兴趣的学生提供电子资源中心。在GRASP的中心是一系列的讲座介绍基本概念的基础上,并与朗兰兹计划向广大观众,通过网络。与此同时,该提案的研究部分开发了一个新的程序,将前沿几何朗兰兹技术应用于代数中更经典的问题。特别是我希望这些想法有一个显着的影响,分类的对称性所产生的线性代数与真实的号码,一个问题与杰出的历史和起源,在量子力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ben-Zvi其他文献
Wonderful asymptotics of matrix coefficient emD/em-modules
矩阵系数 emD/em-模的美妙渐近性
- DOI:
10.1016/j.aim.2022.108578 - 发表时间:
2022-10-29 - 期刊:
- 影响因子:1.500
- 作者:
David Ben-Zvi;Iordan Ganev - 通讯作者:
Iordan Ganev
David Ben-Zvi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ben-Zvi', 18)}}的其他基金
L-functions via geometric quantization
通过几何量化的 L 函数
- 批准号:
2302346 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
- 批准号:
2001398 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Geometric Aspects of Field Theories and Lattice Models
场论和晶格模型的几何方面
- 批准号:
2005286 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Representation Theory as Gauge Theory
作为规范理论的表示论
- 批准号:
1705110 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Abelianization of Connections in Two and Three Dimensions
二维和三维连接的阿贝尔化
- 批准号:
1711692 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Noncommutative and Hamiltonian geometry, symplectic resolutions, and D-modules
非交换几何和哈密顿几何、辛分辨率和 D 模
- 批准号:
1406553 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The local Langlands correspondence in l-adic families
l-adic 家族中当地朗兰兹的对应
- 批准号:
1161582 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis and Applications
几何调和分析及应用
- 批准号:
1103525 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Algebraic Geometry of Difference Operators and Real Bundles
差分算子和实丛的代数几何
- 批准号:
0401448 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Homotopical representation theory and TQFTs
职业:同伦表示理论和 TQFT
- 批准号:
2239698 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
- 批准号:
2237057 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Higher Enumerative Geometry via Representation Theory and Mathematical Physics
职业:通过表示论和数学物理进行高等枚举几何
- 批准号:
1845034 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Categorical Representation Theory of Hecke Algebras
职业:赫克代数的分类表示论
- 批准号:
1553032 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Knot invariants, moduli spaces of sheaves and representation theory
职业:结不变量、滑轮模空间和表示论
- 批准号:
1352398 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Cluster algebras, combinatorics and representation theory
职业:簇代数、组合学和表示论
- 批准号:
1254567 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Representation theory of symplectic singularities
职业:辛奇点表示论
- 批准号:
1419500 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Representation theory of symplectic singularities
职业:辛奇点表示论
- 批准号:
1151473 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
1258675 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant