Shape Restrictions, Empirical Processes, and Semiparametric Models

形状限制、经验过程和半参数模型

基本信息

  • 批准号:
    1104832
  • 负责人:
  • 金额:
    $ 36.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The investigator carries out research on problems involving shape restricted inference, empirical process methods and tools, and new theory for semiparametric and nonparametric models. In particular, the investigator and a University of Washington graduate student conduct research on new confidence set procedures in the context of convex function estimation and new semiparametric models involving shape restrictions. The investigator and a University of Washington graduate biostatistics graduate student conduct research on improved estimation methods for semiparametric models with two-phase designs with missing data (by design). This research also involves development of new asymptotic theory for a variety of complex sampling methods and multi-phase designs. Some of the research on empirical process methods and tools is carried out jointly with colleagues in the Netherlands. Some of the research on inference under shape constrained estimation is carried out jointly with colleagues in France, Switzerland, and Canada. These investigations involve nonstandard asymptotics for maximum likelihood estimators, likelihood ratio statistics, and new nonstandard limit distributions. Part of the proposed research involves better understanding of bootstrap and other resampling procedures in high-dimensional settings. The research also involves development of basic empirical process tools and methods, and applications of these new tools and methods to statistical problems concerning semiparametric models, shape restricted models, and high-dimensional data. One key goal involves improved theory for empirical likelihood and generalized empirical likelihood estimation methods. Another goal is to understand the effect of heavier tailed distributions in high-dimensional statistical problems. Applications include regression models with high-dimensional covariates, models for survival data with missing covariate data, and non- and semi-parametric maximum likelihood estimators used in HIV-AIDS research. The work on two-phase data dependent designs has application to new designs with increased efficiency for clinical trials and case-cohort sampling in epidemiology. The tools of empirical process theory allow investigations of many problems of current interest in other areas of statistics involving high-dimensional data and parameter spaces. The research benefits education and human development by the training of graduate students and the inclusion of the resulting new statistical methods in graduate level courses for the Departments of Statistics and Biostatistics at the University of Washington.
研究方向包括形状限制推理、经验处理方法和工具、半参数和非参数模型新理论等。特别是,研究者和华盛顿大学的一名研究生在凸函数估计和涉及形状限制的新半参数模型的背景下进行了新的置信集程序的研究。研究者和一名华盛顿大学生物统计学研究生进行了一项改进的估计方法的半参数模型与两阶段设计缺失数据(由设计)。本研究还涉及到各种复杂采样方法和多相设计的新渐近理论的发展。一些关于经验过程方法和工具的研究是与荷兰的同事共同进行的。一些形状约束估计下的推理研究是与法国、瑞士和加拿大的同事共同进行的。这些研究涉及极大似然估计量的非标准渐近性、似然比统计量和新的非标准极限分布。拟议研究的一部分涉及更好地理解高维环境下的自举和其他重采样程序。研究还包括开发基本的经验处理工具和方法,并将这些新工具和方法应用于半参数模型、形状限制模型和高维数据的统计问题。一个关键目标涉及改进经验似然理论和广义经验似然估计方法。另一个目标是了解重尾分布在高维统计问题中的影响。应用包括高维协变量的回归模型,缺少协变量数据的生存数据模型,以及用于艾滋病研究的非参数和半参数最大似然估计。两阶段数据依赖设计的工作可以应用于新的设计,提高了流行病学临床试验和病例队列抽样的效率。经验过程理论的工具允许对涉及高维数据和参数空间的其他统计领域中当前感兴趣的许多问题进行调查。这项研究通过培训研究生和将由此产生的新的统计方法纳入华盛顿大学统计和生物统计系的研究生课程,从而有利于教育和人类发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Wellner其他文献

Jon Wellner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Wellner', 18)}}的其他基金

Shape Restrictions, Empirical Processes, and Semiparametric Models
形状限制、经验过程和半参数模型
  • 批准号:
    1566514
  • 财政年份:
    2016
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Shape Restrictions, Semiparametric Models, and Empirical Processes
形状限制、半参数模型和经验过程
  • 批准号:
    0804587
  • 财政年份:
    2008
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Statistical Inverse Problems, Semiparametric Models, and Empirical Processes
统计反问题、半参数模型和经验过程
  • 批准号:
    0503822
  • 财政年份:
    2005
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Statistical Inverse Problems and Point Process Methods in Combinatorics
组合数学中的统计反问题和点过程方法
  • 批准号:
    0203320
  • 财政年份:
    2002
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant
Second International Conference on High Dimensional Probability
第二届国际高维概率会议
  • 批准号:
    9806966
  • 财政年份:
    1999
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Estimation in Semiparametric Models and Empirical Processes
数学科学:半参数模型和经验过程中的估计
  • 批准号:
    9532039
  • 财政年份:
    1996
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Empirical Processes and Statistical Applications
数学科学:经验过程和统计应用
  • 批准号:
    9306809
  • 财政年份:
    1993
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semiparametric Models and Empirical Processes
数学科学:半参数模型和经验过程
  • 批准号:
    9108409
  • 财政年份:
    1991
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Semiparametric Models and Empirical Processes
数学科学:半参数模型和经验过程
  • 批准号:
    8723011
  • 财政年份:
    1988
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Continuing Grant
Large Sample Theory For Empirical and Quantile Processes
经验和分位数过程的大样本理论
  • 批准号:
    8102731
  • 财政年份:
    1981
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant

相似海外基金

Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
  • 批准号:
    MR/Z503769/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Research Grant
Narratives of hope: small stories of desistance; building social capital amid on-going Covid 19 restrictions at HMP/YOI Winchester
希望的叙述:停止的小故事;
  • 批准号:
    2875591
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Studentship
Substantial justification for restrictions on religious freedom
限制宗教自由的充分理由
  • 批准号:
    23K01093
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Correlation between Restrictions on Expression and the Development of Film Genres during the Nazi Occupation, as Seen in the Adaptation of Detective Stories to Film
从侦探故事电影改编看纳粹占领时期表达限制与电影类型发展的关系
  • 批准号:
    23K00448
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reproductive justice for migrant women: Eliminating restrictions on pregnancy and childbirth through reinforcing rule of law
移民妇女的生殖正义:通过加强法治消除对怀孕和生育的限制
  • 批准号:
    23H03652
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Government-imposed Restrictions on International Economic Relations
政府对国际经济关系施加的限制
  • 批准号:
    2315126
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant
The impact of new state restrictions on abortion incidence and safety in the United States
新的州限制对美国堕胎发生率和安全的影响
  • 批准号:
    10738649
  • 财政年份:
    2023
  • 资助金额:
    $ 36.61万
  • 项目类别:
ERI: Analyzing the Impact of Outdoor Water-Use Restrictions and the COVID-19 Pandemic on Water Consumption in Massachusetts
ERI:分析户外用水限制和 COVID-19 大流行对马萨诸塞州用水量的影响
  • 批准号:
    2138539
  • 财政年份:
    2022
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Standard Grant
Uncovering cell-intrinsic restrictions to CRISPR-Cas9 gene editing
揭示 CRISPR-Cas9 基因编辑的细胞内在限制
  • 批准号:
    10449495
  • 财政年份:
    2022
  • 资助金额:
    $ 36.61万
  • 项目类别:
Urban habitat utilization of an established coyote (Canis latrans) population relative to decreased human activity due to COVID- 19 restrictions
由于 COVID-19 的限制,相对于人类活动减少而言,已建立的郊狼 (Canis latrans) 种群的城市栖息地利用情况
  • 批准号:
    580820-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36.61万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了