CURVATURE, SYMMETRY, AND STABILITY IN HOMOGENEOUS SPACES
均匀空间中的曲率、对称性和稳定性
基本信息
- 批准号:1612357
- 负责人:
- 金额:$ 15.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Almost 150 years ago, the foundations of geometry were rocked when it was realized that the familiar (flat) Euclidean geometry that we all learned in high school was not the only possible geometry to consider. In retrospect, it seems natural to consider non-flat geometries as the Earth we live on is, of course, round. Since their first discovery, mathematicians have studied various model geometries with nice curvature properties, such as the round sphere, and we continue to extract new information about these model geometries, how they are distinct from flat Euclidean geometry, and their applications to the universe we live in. The principal investigator will study special model geometries called homogeneous, Einstein spaces to learn more about their basic properties and work towards their classification.The project's main goal is to advance the classification of non-compact, homogeneous Einstein and Ricci soliton spaces. In addition to addressing the question of whether or not these spaces are necessarily solvmanifolds, the PI will work to develop a deeper understanding of the special properties of homogeneous Ricci solitons regarding their stability under the Ricci flow and their isometry groups. To approach these problems, the PI intends to develop more completely the program of using Geometric Invariant Theory to study homogeneous Einstein metrics initiated by Heber, Lauret, et al.
大约150年前,当人们意识到我们在高中时熟悉的(平坦的)欧几里得几何并不是唯一可以考虑的几何时,几何的基础动摇了。回想起来,考虑非平面几何似乎很自然,因为我们生活的地球当然是圆的。自从他们的第一个发现以来,数学家们已经研究了各种具有良好曲率特性的模型几何,比如圆球,我们继续提取关于这些模型几何的新信息,它们与平面欧几里得几何的区别,以及它们在我们生活的宇宙中的应用。首席研究员将研究被称为齐次爱因斯坦空间的特殊几何模型,以了解更多关于它们的基本性质并努力对它们进行分类。该项目的主要目标是推进非紧、齐次爱因斯坦和里奇孤子空间的分类。除了解决这些空间是否一定是可解流形的问题外,PI还将深入了解齐次Ricci孤子在Ricci流及其等长群下的稳定性。为了解决这些问题,PI打算更完整地发展Heber, Lauret等人提出的使用几何不变量理论研究齐次爱因斯坦度量的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Jablonski其他文献
Poster Number: NR 31 - Combinatorial Pharmacogenomics Reduces Polypharmacy and Medication Cost in Elderly Patients with Anxiety and Depression
- DOI:
10.1016/j.jagp.2017.01.165 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:
- 作者:
Mark Mayhew;Michael Jablonski;Jim Li;Bryan Dechairo - 通讯作者:
Bryan Dechairo
Moduli of Einstein and non-Einstein nilradicals
- DOI:
10.1007/s10711-010-9546-z - 发表时间:
2010-11-17 - 期刊:
- 影响因子:0.500
- 作者:
Michael Jablonski - 通讯作者:
Michael Jablonski
Michael Jablonski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Jablonski', 18)}}的其他基金
Symmetry and Geometry on the Southern Great Plains Conference
南部大平原会议的对称与几何
- 批准号:
1856652 - 财政年份:2019
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Participant Support for the Workshop on Differential Geometry
微分几何研讨会的参与者支持
- 批准号:
1632786 - 财政年份:2016
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Symmetry in Solvmanifolds and Geometric Evolutions
求解流形和几何演化中的对称性
- 批准号:
1105647 - 财政年份:2011
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
A Noncontact Water Stage Measuring Instrument
非接触式水位测量仪
- 批准号:
8761134 - 财政年份:1988
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
相似国自然基金
基于级联环形微腔PT-Symmetry效应的芯片级全光开关
- 批准号:61675185
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
DERIVED CATEGORY METHODS IN ARITHMETIC: AN APPROACH TO SZPIRO'S CONJECTURE VIA HOMOLOGICAL MIRROR SYMMETRY AND BRIDGELAND STABILITY CONDITIONS
算术中的派生范畴方法:通过同调镜像对称性和布里奇兰稳定性条件推导SZPIRO猜想
- 批准号:
EP/V047299/1 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Research Grant
Symmetry, Singularity, and Stability in Fluids and Plasmas
流体和等离子体中的对称性、奇异性和稳定性
- 批准号:
2106528 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Research on symmetry, stability and moduli in theory of harmonic maps and submanifolds
调和映射和子流形理论中的对称性、稳定性和模量研究
- 批准号:
21K03252 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability analysis of submanifold with symmetry
对称子流形的稳定性分析
- 批准号:
18K13420 - 财政年份:2018
- 资助金额:
$ 15.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Existence and Energetic Stability of Traveling Waves in the Presence of Symmetry
对称性下行波的存在性和能量稳定性
- 批准号:
1812436 - 财政年份:2018
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Stability, derived categories, and mirror symmetry
稳定性、派生类别和镜像对称
- 批准号:
1501813 - 财政年份:2015
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 15.8万 - 项目类别:
Continuing Grant
Wall-crossing, stability conditions and mirror symmetry
穿墙、稳定条件和镜像对称
- 批准号:
1101377 - 财政年份:2011
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Stability conditions on triangulated categories and related aspects of homological mirror symmetry
三角范畴的稳定性条件及同调镜像对称的相关方面
- 批准号:
DP1096487 - 财政年份:2010
- 资助金额:
$ 15.8万 - 项目类别:
Discovery Projects
Effects of sequence symmetry on stability of the beta-trefoil protein hisactophilin
序列对称性对β-三叶蛋白亲组织蛋白稳定性的影响
- 批准号:
387374-2009 - 财政年份:2009
- 资助金额:
$ 15.8万 - 项目类别:
University Undergraduate Student Research Awards