Volume Optimization on Triangulated 3-Manifolds.

三角 3 流形的体积优化。

基本信息

  • 批准号:
    1105808
  • 负责人:
  • 金额:
    $ 9.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

This project investigates the connection between geometry and topology of 3-manifolds from the point of view of triangulations. This is closely related to the discretization of SL(2,C) Chern-Simon theory in 3-dimensions. The PI proposes to use the volume functional on the finite dimensional space of circle valued angle structures as the basic tool. Given a closed triangulated 3-manifold or pseudo 3-manifold, there are Haken's theory of normal surfaces, and Thurston's algebraic gluing equation associated to the triangulation. Haken's theory is topological and studies surfaces in 3-manifolds, and Thurston's equation is geometric and tries to construct hyperbolic metrics from triangulations. Solutions to Haken's equation are well understood. However, there is no known existence theorem for Thurston's equation. The main objective of the proposal is to establish conditions on the triangulation to guarantee the existence of solutions to Thurston's equation. The PI will focus on the following conjecture relating Haken's equation with Thurston's equation. It states that for any closed minimally triangulated irreducible oriented 3-manifold, either there exists a solution to Thurston's algebraic equation, or there exist three special solutions to Haken's normal surface equation which has exactly one or two non-zero quadrilateral coordinates all supported in a tetrahedron. A weaker form of the conjecture has been established by the PI recently using volume optimization. Recent work of Futer-Gueritaud, Segerman-Tillmann, and Luo-Tillmann shows that the conjecture in the case of simply connected 3-manifolds is equivalent to the Poincare conjecture in dimension three (without using the Ricci flow).Our universe is 3-dimensional. To understand the shapes of the universe and other 3-dimensional solids, mathematicians developed the theory of 3-manifolds using topology and geometry. To investigate these 3-dimensional spaces, one of the revolutionary ideas of William Thurston says that one should use geometry and geometric tools to understand the space. This program of Thurston is called the geometrization of 3-manifolds and has dominated the study of 3-dimensional topological investigation for the past 40 years. Recent work of G. Perelman, using the Ricci flow method developed by R. Hamilton, established the conjecture of Thurston and revolutionized the field. Perelman's work is widely considered to be one of the major mile-stones in the history of mathematics. However, there remains the problem of how to find those geometric structures theoretically predicated by Thurston, Perelman and Hamilton. One of the goals of the proposal aims at developing algorithms to find these geometries on 3-dimensional spaces.
本计画从三角剖分的观点探讨三维流形的几何与拓扑之间的关系。这与SL(2,C)Chern-Simon理论在三维空间中的离散化密切相关。PI提出使用圆值角结构的有限维空间上的体积泛函作为基本工具。给定一个封闭的三角剖分三维流形或伪三维流形,有哈肯的法曲面理论和瑟斯顿的代数胶合方程与三角剖分相关联。哈肯的理论是拓扑和研究表面的3流形,和瑟斯顿的方程是几何和试图构建双曲度量三角。 哈肯方程的解是很好理解的。 然而,没有已知的存在定理瑟斯顿方程。该提案的主要目标是建立三角剖分的条件,以保证瑟斯顿方程的解的存在性。 PI将专注于以下关于哈肯方程与瑟斯顿方程的猜想。它指出,对于任何封闭的极小三角化不可约定向3-流形,要么存在Thurston代数方程的解,要么存在Haken法面方程的三个特解,这些特解恰好有一个或两个非零四边形坐标都支持在四面体中。PI最近使用体积优化建立了一个较弱形式的猜想。Futer-Gueritaud,Segerman-Tillmann和Luo-Tillmann最近的工作表明,在单连通3-流形的情况下的猜想等价于3维的庞加莱猜想(不使用Ricci流)。我们的宇宙是3维的。为了理解宇宙和其他三维固体的形状,数学家们利用拓扑学和几何学发展了三维流形理论。为了研究这些三维空间,威廉·瑟斯顿(William Thurston)的一个革命性想法是,人们应该使用几何和几何工具来理解空间。Thurston的这个程序被称为3-流形的几何化,在过去的40年里一直主导着三维拓扑研究。最近的工作G。Perelman提出的Ricci流方法,汉密尔顿,建立了猜想瑟斯顿和革命性的领域。佩雷尔曼的工作被广泛认为是一个主要里程碑在数学史上。然而,如何找到瑟斯顿、佩雷尔曼和汉密尔顿理论上预言的那些几何结构仍然是一个问题。该提案的目标之一旨在开发算法,以在三维空间中找到这些几何形状。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Luo其他文献

Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
  • DOI:
    10.5004/dwt.2021.27373
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Feng Luo;Huizhi Hu;Yirong Liu
  • 通讯作者:
    Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
  • DOI:
    10.1111/j.1743-7563.2011.01508.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai
  • 通讯作者:
    Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
  • DOI:
    10.1016/j.jes.2018.01.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li
  • 通讯作者:
    Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong
  • 通讯作者:
    Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
  • DOI:
    10.1080/09205063.2020.1854413
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan
  • 通讯作者:
    Hong Tan

Feng Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Luo', 18)}}的其他基金

ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
  • 批准号:
    2131662
  • 财政年份:
    2021
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
  • 批准号:
    2018069
  • 财政年份:
    2020
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760527
  • 财政年份:
    2018
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry of Surfaces and Applications
曲面的离散共形几何及其应用
  • 批准号:
    1811878
  • 财政年份:
    2018
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737876
  • 财政年份:
    2017
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
  • 批准号:
    1405106
  • 财政年份:
    2014
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
  • 批准号:
    1222663
  • 财政年份:
    2012
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
  • 批准号:
    1207832
  • 财政年份:
    2012
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 9.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了