Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
基本信息
- 批准号:1737876
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New developments in technologies of embedded systems, sensors, and wireless communications provide great potential to improve the safety and security of the physical and social environment we live in. These technologies can help identify and mitigate unfortunate accidents, emergency events, and malicious attacks. This project seeks to develop mathematical tools and algorithms based on discrete curvatures for the purpose of understanding and detecting community structures and anomalies in networks that can be of crucial value in many applications. The project considers high level mobility patterns, community structures, and anomalies as well as finer details such as who is where. The mathematical tools to be developed will be useful in other networks (for example, protein-protein interactions in biological networks). This project will investigate mathematical problems arising the analysis of real-time spatial and temporal human mobility data. The focus will be on the community detection problem on graphs by using discrete Ricci curvatures and discrete curvature flows on graphs. The problem is to extract stable groups in human mobility patterns, which will serve as the traffic norm for detecting abnormal patterns that can be tied to criminal or terroristic events. To detect these stable groups, or communities, the main observation is that community structures in a network resemble well known geometric phenomena such as thick-thin decompositions in Riemannian geometry. Inspired by Riemannian geometry and the success of Hamilton-Perelman's Ricci flow program, this work investigates how to use discrete curvatures and discrete curvature flows to detect community structure in a network. Preliminary investigations show that the proposed method has great potential and can detect communities with high accuracy. This potential prompts the PIs to examine computationally feasible definitions of discrete Ricci curvatures on weighted networks. The important work of Ollivier on discrete Ricci curvature is the starting point of this investigation. The drawback of Ollivier's curvature is that it is computationally expensive -- almost impossible to compute the proposed discrete curvature flow on large networks containing more than a million nodes. As such, the main task in this work is to find computationally feasible Ricci curvatures where the discrete curvature flow can be computed in real time for large networks. The affirmative resolution of this work will be useful in pure mathematical research and computer science. The work will also develop software for practical use.
嵌入式系统、传感器和无线通信技术的新发展为改善我们生活的物理和社会环境的安全性提供了巨大的潜力。 这些技术可以帮助识别和减轻不幸的事故、紧急事件和恶意攻击。该项目旨在开发基于离散曲率的数学工具和算法,以理解和检测网络中的社区结构和异常,这些结构和异常在许多应用中具有至关重要的价值。该项目考虑了高级别的移动模式,社区结构和异常以及更精细的细节,如谁在哪里。 待开发的数学工具将在其他网络中(例如,生物网络中的蛋白质-蛋白质相互作用)有用。该项目将研究分析实时空间和时间人类流动数据所产生的数学问题。 重点将是社区检测问题的图上使用离散Ricci曲率和离散曲率流图。 问题是提取稳定的人群流动模式,这将作为交通规范检测异常模式,可以绑定到犯罪或恐怖事件。为了检测这些稳定的群体或社区,主要的观察是网络中的社区结构类似于众所周知的几何现象,例如黎曼几何中的厚-薄分解。受黎曼几何和Hamilton-Perelman的Ricci流程序的启发,本文研究了如何使用离散曲率和离散曲率流来检测网络中的社区结构。 初步调查表明,该方法具有很大的潜力,可以检测社区与高精度。 这种潜力促使PI检查加权网络上离散Ricci曲率的计算可行的定义。重要的工作奥利维尔离散里奇曲率是出发点,这项调查。 Ollivier曲率的缺点是计算成本很高--几乎不可能在包含超过一百万个节点的大型网络上计算所提出的离散曲率流。 因此,在这项工作中的主要任务是找到计算上可行的Ricci曲率的离散曲率流可以在真实的时间计算大型网络。这一结论在纯数学研究和计算机科学中具有一定的应用价值。 这项工作还将开发实用软件。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An effective Lie–Kolchin Theorem for quasi-unipotent matrices
拟单能矩阵的有效李科尔钦定理
- DOI:10.1016/j.laa.2019.07.023
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:Koberda, Thomas;Luo, Feng;Sun, Hongbin
- 通讯作者:Sun, Hongbin
A discrete uniformization theorem for polyhedral surfaces II
- DOI:10.4310/jdg/1531188190
- 发表时间:2014-01
- 期刊:
- 影响因子:2.5
- 作者:X. Gu;Ren Guo;F. Luo;Jian Sun;Tianqi Wu
- 通讯作者:X. Gu;Ren Guo;F. Luo;Jian Sun;Tianqi Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feng Luo其他文献
Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
- DOI:
10.5004/dwt.2021.27373 - 发表时间:
2021 - 期刊:
- 影响因子:1.1
- 作者:
Feng Luo;Huizhi Hu;Yirong Liu - 通讯作者:
Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
- DOI:
10.1111/j.1743-7563.2011.01508.x - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai - 通讯作者:
Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
- DOI:
10.1016/j.jes.2018.01.016 - 发表时间:
2018 - 期刊:
- 影响因子:6.9
- 作者:
Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li - 通讯作者:
Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong - 通讯作者:
Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
- DOI:
10.1080/09205063.2020.1854413 - 发表时间:
2020-11 - 期刊:
- 影响因子:3.6
- 作者:
Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan - 通讯作者:
Hong Tan
Feng Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feng Luo', 18)}}的其他基金
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
- 批准号:
2131662 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
- 批准号:
2018069 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760527 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
- 批准号:
1759856 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Discrete Conformal Geometry of Surfaces and Applications
曲面的离散共形几何及其应用
- 批准号:
1811878 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
- 批准号:
1405106 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
- 批准号:
1222663 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
- 批准号:
1207832 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Volume Optimization on Triangulated 3-Manifolds.
三角 3 流形的体积优化。
- 批准号:
1105808 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant