Discrete Conformal Geometry of Surfaces and Applications

曲面的离散共形几何及其应用

基本信息

  • 批准号:
    1811878
  • 负责人:
  • 金额:
    $ 10.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Digital surfaces are being massively produced from scanners, imaging systems, sensors and many other devices these days. How to compare and categorize these surfaces is an urgent and important problem. This National Science Foundation funded project aims to develop mathematical theories for an efficient and speedy classification of digital surfaces. A successful completion of this National Science Foundation funded project will have applications in medical imaging, game industry, engineering and many fields. Some of the earlier work of the PI in this area have already been used in health and game industries. The project work will further advance this progress and develop deep mathematics based on the classical Riemann surface theory and conformal geometry. The classical theory of Riemann surfaces is a powerful tool for classifying surfaces up to conformal diffeomorphisms. The most important theorem in the theory is the Poincare-Koebe's uniformization theorem. The theorem has a wide range of applications within and outside mathematics. However, computation of uniformization maps and metrics on non-flat surfaces are very difficult in general. The goal of the proposal is to develop a theory of discrete conformal geometry for polyhedral surfaces, to establish the counterpart of the uniformization theorem in the discrete setting, and to prove convergence of discrete conformal maps to conformal maps. The PI will develop efficient algorithms to compute uniformization metrics through collaboration. The main ingredient in developing a discrete conformal geometry is to define the notion of discrete conformality. In a recent joint work with collaborators, the PI introduced a notion of discrete conformal equivalence for polyhedral metrics on surfaces. The PI and his collaborators proved a discrete version of uniformization theorem for compact polyhedral surfaces and showed that discrete conformal maps converge to conformal maps on tori and disks. There remain several major open problems of establishing the convergence of discrete conformal maps for all surfaces and proving the discrete uniformization theorem for all non-compact simply connected surfaces. The discrete conformality introduced by us is closely related to the work of Alexandrov, Pogorelov and Thurston on convex surfaces in hyperbolic three-space, the classical Wyle problem and the Koebe circle domain conjecture. Tools developed in the classical area of mathematics will be used to solve the proposed problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,数字表面正在由扫描仪、成像系统、传感器和许多其他设备大规模生产。 如何对这些表面进行比较和分类是一个迫切而重要的问题。 这个国家科学基金会资助的项目旨在开发数学理论,以有效和快速地对数字表面进行分类。 这个国家科学基金会资助的项目的成功完成将在医学成像,游戏行业,工程和许多领域的应用。PI在这一领域的一些早期工作已经用于健康和游戏行业。 该项目工作将进一步推进这一进程,并在经典黎曼曲面理论和共形几何的基础上发展深层数学。 黎曼曲面的经典理论是将曲面分类为共形反同态的有力工具。该理论中最重要的定理是Poincare-Koebe单值化定理。该定理在数学内外都有广泛的应用。然而,非平坦表面上的均匀化映射和度量的计算通常非常困难。该提案的目标是发展一个理论的离散共形几何多面体表面,建立对应的单值化定理在离散设置,并证明收敛的离散共形映射到共形映射。PI将通过合作开发有效的算法来计算均匀化指标。 发展离散共形几何的主要内容是定义离散共形性的概念。在最近与合作者的联合工作中,PI引入了曲面上多面体度量的离散共形等价的概念。PI和他的合作者证明了紧凑多面体表面的一致化定理的离散版本,并表明离散的共形映射收敛到环面和圆盘上的共形映射。 建立所有曲面的离散共形映射的收敛性和证明所有非紧单连通曲面的离散一致化定理仍然是几个主要的公开问题。我们引入的离散共形性与Alexandrov、Pogorelov和Thurston关于三维双曲空间中凸曲面的工作、经典Wyle问题和Koebe圆域猜想密切相关。 该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An effective Lie–Kolchin Theorem for quasi-unipotent matrices
拟单能矩阵的有效李科尔钦定理
  • DOI:
    10.1016/j.laa.2019.07.023
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Koberda, Thomas;Luo, Feng;Sun, Hongbin
  • 通讯作者:
    Sun, Hongbin
Computational Conformal Geometry Behind Modern Technologies
现代技术背后的计算共形几何
Co-evolution of Opinion and Social Tie Dynamics Towards Structural Balance
舆论和社会关系动态的共同演化走向结构平衡
Discrete conformal geometry of polyhedral surfaces and its convergence
  • DOI:
    10.2140/gt.2022.26.937
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Luo;Jian Sun;Tianqi Wu
  • 通讯作者:
    F. Luo;Jian Sun;Tianqi Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Luo其他文献

Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
  • DOI:
    10.5004/dwt.2021.27373
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Feng Luo;Huizhi Hu;Yirong Liu
  • 通讯作者:
    Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
  • DOI:
    10.1111/j.1743-7563.2011.01508.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai
  • 通讯作者:
    Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
  • DOI:
    10.1016/j.jes.2018.01.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li
  • 通讯作者:
    Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong
  • 通讯作者:
    Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
  • DOI:
    10.1080/09205063.2020.1854413
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan
  • 通讯作者:
    Hong Tan

Feng Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Luo', 18)}}的其他基金

ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
  • 批准号:
    2131662
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
  • 批准号:
    2018069
  • 财政年份:
    2020
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760527
  • 财政年份:
    2018
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737876
  • 财政年份:
    2017
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
  • 批准号:
    1405106
  • 财政年份:
    2014
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
  • 批准号:
    1222663
  • 财政年份:
    2012
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
  • 批准号:
    1207832
  • 财政年份:
    2012
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Volume Optimization on Triangulated 3-Manifolds.
三角 3 流形的体积优化。
  • 批准号:
    1105808
  • 财政年份:
    2011
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
  • 批准号:
    2350530
  • 财政年份:
    2024
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
  • 批准号:
    2154127
  • 财政年份:
    2022
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10701881
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
Transformation Groups in Conformal and Projective Geometry
共角几何和射影几何中的变换群
  • 批准号:
    2109347
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
  • 批准号:
    21K03269
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10298072
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
  • 批准号:
    10473754
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
  • 批准号:
    2046514
  • 财政年份:
    2021
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Continuing Grant
Conformal geometry and black holes
共形几何和黑洞
  • 批准号:
    2436731
  • 财政年份:
    2020
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Studentship
The Complex and Conformal Geometry of 4-Manifolds
4-流形的复杂共形几何
  • 批准号:
    1906267
  • 财政年份:
    2019
  • 资助金额:
    $ 10.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了