Study of ultra-cold orbital, large spin, and dipolar systems in optical lattices
光学晶格中超冷轨道、大自旋和偶极系统的研究
基本信息
- 批准号:1105945
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports the theoretical study of novel states of matter with cold atoms and dipolar molecules, which are not easily accessible in typical materials. It also provides theoretical guidance for current experimental efforts. The PI will use both analytical and numerical methods including self-consistent mean-field theory, classical and quantum field theoretical methods, and quantum Monte-Carlo simulations. The research has three foci: 1.) The study of exotic states of ultra-cold bosons and fermions in the high orbital bands of optical lattices. For orbital bosons, based on his previous study on unconventional Bose-Einstein condensations beyond the 'no-node' theorem, the PI will further investigate their collective excitations and quantum phase transitions. The research on fermions will focus on the quantum anomalous Hall insulators with interesting band topology and exotic Mott insulators with frustrated orbital exchanges. 2.) The study of the competing phases of ultra-cold large-spin alkali and alkaline earth atoms with a particular focus on the exotic quantum magnetism characterized by strong quantum fluctuations. 3.) The study of unconventional Cooper pairing that arises from ultra-cold electric and magnetic dipolar interactions leading to new mechanisms for p-wave triplet Cooper pairing. This project seeks to predict new states of matter that have not yet been found in materials but are currently the subject of cold atom experiments. This research lies at the interface between condensed matter and cold atom physics and will benefit both fields. Students will receive train-ing in analytical and numerical methods for strongly correlated systems, and will develop broad research interests. Research results will be incorporated into advanced graduate courses. NONTECHNICAL SUMMARYThis award supports theoretical research and education that seek to study new states of matter that arise in a kind of 'crystal of light,' which is made from atoms that are very close to the absolute zero of temperature and are trapped in laser beams forming a regular array of atoms. These ultra-cold atoms can behave in ways that are analogous to electrons moving in materials and provide another way to discover and study electronic states of matter that arise as a consequence of strong interactions among electrons. These novel electronic states may live in a class of mate-rials known as strongly correlated materials. An advantage of studying ultra-cold atom analogs is that the interactions between atoms trapped in laser light can be more easily tuned than the elec-trons in a material.Ultra-cold atoms trapped by lasers are interesting in their right as they can form novel quantum mechanical states that cannot occur or are not easily observed in the electrons of a material. The interactions among atoms can be more complex than those among electrons leading to interesting novel states of matter. The PI aims to develop theories to explain the novel quantum mechanical properties of these cold atoms in crystals of light. The theories provide guidance for new experiments, deepening our understanding of quantum physics and states of matter of ultra-cold atoms and electrons alike, and leading to new discoveries.This is fundamental research that lies at the interface of atomic and condensed matter physics. Systems of cold atoms are intriguing and may hold possibilities for future technologies. Conspicuous among these is the potential to realize powerful new methods of computation based on the principles of quantum mechanics. Students will receive training in advanced theoretical condensed matter physics which will stimulate students to develop broad interests and skills in the scientific frontiers. Aspects of the research, particularly the underlying theoretical techniques, form part of the subject matter of the advanced physics courses that the PI will develop.
技术总结该奖项支持对具有冷原子和偶极分子的新型物质状态的理论研究,这些物质在典型材料中是不容易获得的。这也为当前的实验工作提供了理论指导。PI将使用分析和数值方法,包括自洽平均场理论、经典和量子场理论方法以及量子蒙特卡罗模拟。本研究有三个重点:1)光学格子高轨道带中超冷玻色子和费米子奇异态的研究。对于轨道玻色子,基于他之前关于非传统玻色-爱因斯坦凝聚的研究,PI将进一步研究它们的集体激发和量子相变。对费米子的研究将集中在具有有趣的能带拓扑的量子反常霍尔绝缘体和具有受挫轨道交换的奇异的Mott绝缘体。2.)研究超冷、大自旋的碱原子和碱土原子的竞争相,特别关注以强量子涨落为特征的奇异量子磁性。3.)对超冷电偶极和磁偶极相互作用引起的非传统库珀配对的研究,为p波三重态库珀配对提供新的机制。该项目试图预测尚未在材料中发现但目前正在进行冷原子实验的物质的新状态。这项研究位于凝聚态和冷原子物理之间,对这两个领域都有好处。学生将接受强相关系统的分析和数值方法方面的培训,并将培养广泛的研究兴趣。研究成果将被纳入高级研究生课程。非技术性总结该奖项支持理论研究和教育,这些研究和教育旨在研究一种“光的晶体”中出现的新的物质状态,这种“光的晶体”由非常接近绝对零度的原子组成,并被捕获在形成规则原子阵列的激光中。这些超冷原子的行为方式类似于电子在材料中的运动,并提供了另一种方式来发现和研究由于电子之间强烈相互作用而产生的物质的电子态。这些新的电子态可能存在于一类被称为强关联材料的材料中。研究超冷原子类比的一个优点是,被激光捕获的原子之间的相互作用比材料中的电子更容易调节。被激光捕获的超冷原子很有趣,因为它们可以形成新的量子力学状态,这些量子力学状态在材料的电子中不会出现,也不容易观察到。原子之间的相互作用可能比电子之间的相互作用更复杂,从而产生有趣的新奇物质状态。PI的目的是开发理论来解释光晶体中这些冷原子的新的量子力学性质。这些理论为新的实验提供了指导,加深了我们对量子物理和超冷原子和电子的物质状态的理解,并导致了新的发现。这是位于原子和凝聚态物理交界处的基础研究。冷原子系统很耐人寻味,可能蕴含着未来技术的可能性。其中值得注意的是,有可能实现基于量子力学原理的强大的新计算方法。学生将接受先进理论凝聚态物理的培训,这将激发学生在科学前沿发展广泛的兴趣和技能。研究的各个方面,特别是基本的理论技术,构成了PI将开发的高级物理课程的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Congjun Wu其他文献
Separating light absorption layer from channel in ZnO vertical nanorod arrays based photodetectors for high-performance image sensors
将光吸收层与基于 ZnO 垂直纳米棒阵列的光电探测器中的通道分离,用于高性能图像传感器
- DOI:
10.1063/1.5011645 - 发表时间:
2018-05 - 期刊:
- 影响因子:4
- 作者:
Yang Ma;Congjun Wu;Zhihao Xu;Fei Wang;Min Wang - 通讯作者:
Min Wang
Orbital ordering and frustration of p-band Mott insulators.
- DOI:
10.1103/physrevlett.100.200406 - 发表时间:
2008-01 - 期刊:
- 影响因子:8.6
- 作者:
Congjun Wu - 通讯作者:
Congjun Wu
Mott made easy
- DOI:
10.1038/nphys2432 - 发表时间:
2012-09 - 期刊:
- 影响因子:19.6
- 作者:
Congjun Wu - 通讯作者:
Congjun Wu
Quantum magnetism in ultracold alkali and alkaline-earth fermion systems with symplectic symmetry
具有辛对称性的超冷碱金属和碱土金属费米子系统中的量子磁性
- DOI:
10.1103/physrevb.84.054406 - 发表时间:
2011-03 - 期刊:
- 影响因子:0
- 作者:
Hsiang-Hsuan Hung;Yupeng Wang;Congjun Wu - 通讯作者:
Congjun Wu
Research on the coupled modulation transfer function of discrete sampling system with hexagonal fiber optic imaging bundles
六边形光纤成像束离散采样系统耦合调制传递函数研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.7
- 作者:
Wenxian Li;Chengshan Han;Congjun Wu;Yawei Huang;Hang Zhang - 通讯作者:
Hang Zhang
Congjun Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Congjun Wu', 18)}}的其他基金
Novel properties of multi-component ultra-cold atom systems
多组分超冷原子系统的新特性
- 批准号:
1410375 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Novel Quantum Phases in Orbital and Large Spin Systems with Cold Atoms
冷原子轨道和大型自旋系统中的新型量子相
- 批准号:
0804775 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
- 批准号:
23K13046 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
- 批准号:
10546201 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Development of a Spin Analyzer for Neutron Electric Dipole Moment Search with Ultra Cold Neutron
超冷中子中子电偶极矩搜索自旋分析仪的研制
- 批准号:
22H01236 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms
使用超冷原子的下一代绝对量子陀螺仪
- 批准号:
RGPIN-2021-02629 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms
使用超冷原子的下一代绝对量子陀螺仪
- 批准号:
RGPIN-2021-02629 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
A Next-Generation Absolute Quantum Gyroscope using Ultra-Cold Atoms
使用超冷原子的下一代绝对量子陀螺仪
- 批准号:
DGECR-2021-00070 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement
iPPSIS: implanted Passive Pressure Sensor Interrogated with (ultra)-Sound
iPPSIS:植入式无源压力传感器,通过(超)声音询问
- 批准号:
10196310 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Single molecule localization microscopy via angstrom-scale three-dimensional imaging of electron spin labels
通过电子自旋标记的埃级三维成像进行单分子定位显微镜
- 批准号:
10707059 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Theory of quantum optics and ultra cold atoms
量子光学和超冷原子理论
- 批准号:
552490-2020 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards