Stochastic Epidemic Models and Related Random Processes
随机流行病模型及相关随机过程
基本信息
- 批准号:1106669
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary focus of the project will be the study of stochastic models for epidemics and related random processes in which infection, information, or some other transmissible quantity is passed randomly among the nodes of a network. The dominant theme of the research will be the effect of the network geometry on the behavior of the epidemic processes, especially near critical values of the transmission rate parameter(s). Two large classes of network geometries, Euclidean and hyperbolic, will be studied. Euclidean geometries are appropriate for models of geographically structured populations, such as plants along a river bed; here, for instance, the network might consist of individual nodes arranged in communities placed at the vertices of a regular lattice, with interactions restricted to nodes in the same or neighboring communities. Hyperbolic geometries (such as those arising in expander graphs or ?small worlds? models) are in many instances more appropriate for human populations and computer networks, where interactions do not follow a regular geographic pattern. Both finite and infinite networks will be studied. The primary objective will be the description of large-population and/or large network limiting behavior.Stochastic epidemic models are closely related to a number of other large classes of stochastic processes, and these will play a large role in the research project. Epidemics of SIR type (susceptible, infected, removed) are at least in simple cases equivalent to bond percolation on the network. Epidemics of SIS type are contact processes. In Euclidean geometries, many of these processes have measure-valued scaling limits that obey stochastic partial differential equations of reaction-diffusion type. A secondary objective of the research will be to understand the threshold phenomena and phase transitions that occur in some of these related processes, and to explore how these are mirrored in epidemic models. Epidemics -- in human and animal populations, but also in computer and communications networks -- arise from chance events. These are, in many cases, simple but uncontrollable events: A passenger on a bus might or might not touch a guard rail that has been contaminated by MIRSA bacteria; a computer user might or might not click on an attachment to an email message informing him that a wealthy businessman in Nigeria is asking for his help in transferring 30 million dollars out of the country. These chance encounters are, however, repeated in large numbers, by thousands of people, hundreds of times, and so they occur with statistically predictable frequencies. This makes it possible -- at least in principle -- to predict the course of an epidemic in a large population.This research project is concerned with the study of simple mathematical models of epidemic processes. The particular emphasis of the study will be on understanding how the underlying geometry of the network of individuals or communications nodes through which the epidemic propagates affects its course.
该项目的主要重点是研究流行病和相关随机过程的随机模型,其中感染、信息或其他可传播量在网络节点之间随机传递。研究的主题将是网络几何对流行病过程行为的影响,特别是传播率参数的临界值附近。将研究两大类网络几何形状:欧几里得几何形状和双曲线形状。欧几里得几何适用于地理结构种群的模型,例如河床沿线的植物;例如,这里的网络可能由排列在规则网格顶点的社区中的各个节点组成,交互仅限于相同或相邻社区中的节点。双曲几何(例如在扩展图或“小世界”模型中出现的几何)在许多情况下更适合人类群体和计算机网络,其中相互作用不遵循规则的地理模式。将研究有限网络和无限网络。主要目标是描述大量人口和/或大型网络限制行为。随机流行病模型与许多其他大类随机过程密切相关,这些模型将在研究项目中发挥重要作用。 SIR 类型的流行病(易感、感染、移除)至少在简单情况下相当于网络上的债券渗透。 SIS类型的流行病是接触过程。在欧几里德几何中,许多过程都具有服从反应扩散类型的随机偏微分方程的测量值标度限制。该研究的第二个目标是了解一些相关过程中发生的阈值现象和相变,并探索这些现象如何反映在流行病模型中。流行病——在人类和动物种群中,以及在计算机和通信网络中——都是由偶然事件引起的。在许多情况下,这些都是简单但无法控制的事件:公共汽车上的乘客可能会也可能不会接触被 MIRSA 细菌污染的护栏;计算机用户可能会也可能不会点击一封电子邮件的附件,该附件通知他尼日利亚的一位富商正在寻求他的帮助,将 3000 万美元转出该国。然而,这些偶遇会被数千人、数百次大量重复,因此它们发生的频率在统计上是可预测的。这使得至少在原则上预测大量人群中流行病的进程成为可能。该研究项目涉及流行病过程的简单数学模型的研究。该研究的特别重点是了解流行病传播的个人或通信节点网络的基本几何结构如何影响其进程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Lalley其他文献
Chernoff's distribution and differential equations of parabolic and Airy type
- DOI:
10.1016/j.jmaa.2014.10.051 - 发表时间:
2015-03-15 - 期刊:
- 影响因子:
- 作者:
Piet Groeneboom;Steven Lalley;Nico Temme - 通讯作者:
Nico Temme
Steven Lalley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Lalley', 18)}}的其他基金
Questions at the Interface of Probability and Geometry
概率与几何的交叉问题
- 批准号:
1612979 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Problems in Stochastic Processes: Hyperbolic structures, Bayesian nonparametric estimation, and spatial epidemic and interspecies competition models
随机过程中的问题:双曲结构、贝叶斯非参数估计、空间流行病和种间竞争模型
- 批准号:
0805755 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Twenty-Third Midwest Probability Colloquium
第二十三届中西部概率研讨会
- 批准号:
0112530 - 财政年份:2001
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Research in Stochastic Processes and Nonlinear Filtering
随机过程和非线性滤波研究
- 批准号:
0071970 - 财政年份:2000
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Self-Affine Sets, Random Walks on Discrete Groups, and Thermodynamic Formalism
数学科学:自仿射集、离散群上的随机游动和热力学形式主义
- 批准号:
9307855 - 财政年份:1993
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Probability and Erodic Theory
数学科学:概率研究和侵蚀理论
- 批准号:
9005118 - 财政年份:1990
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
RAISE: IHBEM: Mathematical Formulations of Human Behavior Change in Epidemic Models
RAISE:IHBEM:流行病模型中人类行为变化的数学公式
- 批准号:
2229819 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Study of recurrent waves in structured epidemic models
结构化流行病模型中复发波的研究
- 批准号:
23K03214 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NIRG: Rule-based epidemic models
NIRG:基于规则的流行病模型
- 批准号:
MR/X011658/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Machine learning models for spatiotemporal modeling of epidemic spreading
用于流行病传播时空建模的机器学习模型
- 批准号:
573428-2022 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
University Undergraduate Student Research Awards
Stochastic simulations of epidemic models
流行病模型的随机模拟
- 批准号:
570149-2022 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral
Statistical inference for epidemic models accounting for population heterogeneity: computational efficiency & model development
考虑人口异质性的流行病模型的统计推断:计算效率
- 批准号:
RGPIN-2022-03292 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
RAISE: IHBEM: Understanding and Predicting Behavioral Responses to Epidemic Risks and Control Policies: Implications for Epidemiological Models and Policy Design
RAISE:IHBEM:理解和预测对流行病风险和控制政策的行为反应:对流行病学模型和政策设计的影响
- 批准号:
2230119 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Optimizing the role of prescribed safe supply and exploring alternate dispensing models during an overdose epidemic
在药物过量流行期间优化处方安全供应的作用并探索替代配药模式
- 批准号:
459004 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Studentship Programs
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant














{{item.name}}会员




