Mathematical Sciences: Self-Affine Sets, Random Walks on Discrete Groups, and Thermodynamic Formalism
数学科学:自仿射集、离散群上的随机游动和热力学形式主义
基本信息
- 批准号:9307855
- 负责人:
- 金额:$ 10.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1997-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research will be conducted in three related areas: Self-Affine Sets and Expanding Maps; Probability on Discrete Groups; and Thermodynamic Formalism. The ultimate goal is to contribute to the understanding of statistical behavior in nonconformal expansive and hyperbolic dynamical systems, especially as it relates to the "fractal" geometry of repellers. The more immediate aim is to elucidate the structure of self-affine sets,e.g., the relationship between Hausdorff and Bouligand dimensions and the natural dynamical systems associated with such sets. For this a better understanding of random matrix products, especially their large deviations, seems essential. The study of random matrix products, in turn, leads to questions concerning random walks on nonabelian groups and the theory of Gibbs measures and thermodynamic formalism: in particular, a significant component of the research effort will be directed to producing accurate approximations to the transition probabilities of random walks on discrete groups and semigroups, and developing a theory of Ruelle-like operators appropriate for this purpose. Investigations into the behavior of certain chaotic dynamical systems will be conducted, in particular, those in which the phase space is stretched at different rates in different directions. Unusual geometric objects that arise in the "phase spaces" of these dynamical systems, called "repellers," and their connections with the nature of the dynamics will be closely studied. The theory of probability predominates in these investigations: questions involving the behavior of "typical" orbits are studied by choosing an initial state of the system "at random." This viewpoint leads to related problems in probability theory proper, mostly concerned with certain features of random walks on state spaces with a highly noneuclidean geometry ("matrix groups").
研究将在三个相关领域进行:自仿射集和扩展映射;离散群的概率;热力学形式论。最终目标是有助于理解非共形展开和双曲动力系统中的统计行为,特别是当它与排斥子的“分形”几何有关时。更直接的目的是阐明自仿射集合的结构,例如,Hausdorff和Bouligand维度之间的关系以及与这些集合相关的自然动力系统。为此,更好地理解随机矩阵乘积,特别是它们的大偏差,似乎是至关重要的。对随机矩阵乘积的研究反过来又引出了关于非交换群上的随机游动以及Gibbs测度理论和热力学形式论的问题:特别是,这项研究的一个重要组成部分将致力于产生离散群和半群上随机游动的转移概率的精确近似,并发展适合于此目的的Ruelle-like算子理论。我们将对某些混沌动力系统的行为进行研究,特别是那些相空间在不同方向上以不同的速度拉伸的系统。在这些动力系统的“相空间”中出现的不寻常的几何物体,被称为“排斥体”,以及它们与动力学本质的联系将被仔细研究。概率论在这些研究中占主导地位:涉及“典型”轨道行为的问题是通过“随机”选择系统的初始状态来研究的。这一观点引出了概率论本身的相关问题,主要涉及具有高度非欧几里德几何(“矩阵群”)的状态空间上随机游动的某些特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Lalley其他文献
Chernoff's distribution and differential equations of parabolic and Airy type
- DOI:
10.1016/j.jmaa.2014.10.051 - 发表时间:
2015-03-15 - 期刊:
- 影响因子:
- 作者:
Piet Groeneboom;Steven Lalley;Nico Temme - 通讯作者:
Nico Temme
Steven Lalley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Lalley', 18)}}的其他基金
Questions at the Interface of Probability and Geometry
概率与几何的交叉问题
- 批准号:
1612979 - 财政年份:2016
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Stochastic Epidemic Models and Related Random Processes
随机流行病模型及相关随机过程
- 批准号:
1106669 - 财政年份:2011
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Problems in Stochastic Processes: Hyperbolic structures, Bayesian nonparametric estimation, and spatial epidemic and interspecies competition models
随机过程中的问题:双曲结构、贝叶斯非参数估计、空间流行病和种间竞争模型
- 批准号:
0805755 - 财政年份:2008
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Twenty-Third Midwest Probability Colloquium
第二十三届中西部概率研讨会
- 批准号:
0112530 - 财政年份:2001
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Research in Stochastic Processes and Nonlinear Filtering
随机过程和非线性滤波研究
- 批准号:
0071970 - 财政年份:2000
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Probability and Erodic Theory
数学科学:概率研究和侵蚀理论
- 批准号:
9005118 - 财政年份:1990
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Harmonic Analysis and Self-Similarity
数学科学:调和分析和自相似性
- 批准号:
9623250 - 财政年份:1996
- 资助金额:
$ 10.05万 - 项目类别:
Continuing grant
Mathematical Sciences: Self-Consistent Estimators, Bootstrap and Censored Data
数学科学:自洽估计、引导和审查数据
- 批准号:
9510376 - 财政年份:1995
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Self-focussing as a Deterministic Mechanism for Generating Spatial Complexity in Ecosystems
数学科学:非线性自聚焦作为生态系统中产生空间复杂性的确定性机制
- 批准号:
9505327 - 财政年份:1995
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Mathematical Sciences: Self-Dual Stone Algebras and Applications
数学科学:自对偶斯通代数及其应用
- 批准号:
9409741 - 财政年份:1994
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Self-Similarity
数学科学:调和分析和自相似性
- 批准号:
9303718 - 财政年份:1993
- 资助金额:
$ 10.05万 - 项目类别:
Continuing grant
Mathematical Sciences: Markov Chains and Self-Organizing Data Structures
数学科学:马尔可夫链和自组织数据结构
- 批准号:
9311367 - 财政年份:1993
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Structural Properties of Non Self Adjoint Operator Algebras
数学科学:非自伴随算子代数的结构性质
- 批准号:
9204811 - 财政年份:1992
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quantum Self-Trapping
数学科学:量子自陷
- 批准号:
9114503 - 财政年份:1992
- 资助金额:
$ 10.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Self-Dual Yang-Mills Connections
数学科学:非自对偶杨米尔斯联系
- 批准号:
9106807 - 财政年份:1991
- 资助金额:
$ 10.05万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in the Theories of Partial Sums, Self-Normalized Sums, Partial Maxima and Random Sets
数学科学:部分和、自归一化和、部分极大值和随机集理论中的问题
- 批准号:
9001008 - 财政年份:1990
- 资助金额:
$ 10.05万 - 项目类别:
Interagency Agreement














{{item.name}}会员




