Questions at the Interface of Probability and Geometry

概率与几何的交叉问题

基本信息

  • 批准号:
    1612979
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

A common thread in the mathematical description of dynamical processes is the transport of some important quantity -- perhaps electrons in a crystal with imperfections, or infection in a biological network, or information in a social network -- by rules that incorporate randomness at the microscopic level, but result in statistical regularity at macroscopic scales. In many such processes, the key to understanding this macroscopic order is a careful analysis of the random motions of individual particles (or bits of information) in the network. In turn, understanding the random motions of particles in inhomogeneous networks often requires analysis of the corresponding motions in homogeneous networks. A major goal of this research is to construct a comprehensive picture of how random walkers behave in infinite homogeneous networks with tree-like, or "hyperbolic'' geometry. A secondary goal is to determine the behavior of a number of specific models of epidemic and information-propagation models in such networks. Some of the research topics will involve graduate students, who will benefit from exposure to these cutting-edge problems in mathematical probability theory and their motivating application areas.The project aims to settle a number of important open technical questions concerning the long-time behavior of random walks on lattices of semi-simple Lie groups and other nonamenable discrete groups. These center on "local limit" behavior: for which groups do random walks with arbitrary, but finitely supported, step distributions obey a universal local limit law? Related questions concern the structure of the Martin boundaries for such random walks, the support of the exit measure, and the geometry of long random loops. The project will also devote some effort to the study of SIR epidemics, with the particular object of describing critical scaling behavior.
在动力学过程的数学描述中,一个共同的线索是一些重要量的传输--也许是有缺陷的晶体中的电子,或者是生物网络中的感染,或者是社会网络中的信息--通过在微观层面上包含随机性的规则,但在宏观尺度上产生统计规律性。在许多这样的过程中,理解这种宏观秩序的关键是仔细分析网络中单个粒子(或信息位)的随机运动。反过来,理解非均匀网络中粒子的随机运动通常需要分析均匀网络中相应的运动。这项研究的一个主要目标是构建一个全面的图片如何随机游走在无限同质网络与树状,或“双曲”几何。第二个目标是确定一些特定的流行病模型和信息传播模型在这样的网络中的行为。部分研究课题将涉及研究生,他们将从接触数学概率论及其激励应用领域的前沿问题中受益。该项目旨在解决一些重要的开放性技术问题,这些问题涉及半单李群和其他不服从离散群格上随机游动的长期行为。这些研究集中在“局部极限”行为上:对于哪些群体来说,随机游动具有任意的,但不受支持的,步分布服从普遍的局部极限定律?相关的问题涉及马丁边界的结构,这样的随机游动,出口措施的支持,和长随机循环的几何形状。该项目还将致力于SIR流行病的研究,特别是描述临界缩放行为的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Lalley其他文献

Chernoff's distribution and differential equations of parabolic and Airy type
  • DOI:
    10.1016/j.jmaa.2014.10.051
  • 发表时间:
    2015-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Piet Groeneboom;Steven Lalley;Nico Temme
  • 通讯作者:
    Nico Temme

Steven Lalley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Lalley', 18)}}的其他基金

Stochastic Epidemic Models and Related Random Processes
随机流行病模型及相关随机过程
  • 批准号:
    1106669
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Problems in Stochastic Processes: Hyperbolic structures, Bayesian nonparametric estimation, and spatial epidemic and interspecies competition models
随机过程中的问题:双曲结构、贝叶斯非参数估计、空间流行病和种间竞争模型
  • 批准号:
    0805755
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Research in Stochastic Processes
随机过程研究
  • 批准号:
    0405102
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Twenty-Third Midwest Probability Colloquium
第二十三届中西部概率研讨会
  • 批准号:
    0112530
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Research in Stochastic Processes and Nonlinear Filtering
随机过程和非线性滤波研究
  • 批准号:
    0071970
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Topics in Probability
概率论主题
  • 批准号:
    9626590
  • 财政年份:
    1996
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Self-Affine Sets, Random Walks on Discrete Groups, and Thermodynamic Formalism
数学科学:自仿射集、离散群上的随机游动和热力学形式主义
  • 批准号:
    9307855
  • 财政年份:
    1993
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Investigations in Probability and Erodic Theory
数学科学:概率研究和侵蚀理论
  • 批准号:
    9005118
  • 财政年份:
    1990
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
  • 批准号:
    BB/Y000560/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
  • 批准号:
    2344553
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Cooperative Agreement
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
  • 批准号:
    2339387
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Analytic Number Theory at the Interface
界面上的解析数论
  • 批准号:
    2401106
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
REU Site: SURFing the Interface between Chemistry and Biology
REU 网站:探索化学与生物学之间的界面
  • 批准号:
    2348203
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
  • 批准号:
    2349731
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
  • 批准号:
    2338117
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了