Problems in Stochastic Processes: Hyperbolic structures, Bayesian nonparametric estimation, and spatial epidemic and interspecies competition models
随机过程中的问题:双曲结构、贝叶斯非参数估计、空间流行病和种间竞争模型
基本信息
- 批准号:0805755
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary focus of the project will be the study of random processes random walks and branching random walks, contact processes, Ising model, and competition processes on hyperbolic groups and graphs. The last four of these processes exhibit multiple phases, including an intermediate phase of weak survival that is not seen on integer lattices. A major objective of the research will be to understand how hyperbolic geometry constrains the upper phase transition between weak and strong survival, and how this in turn is related to asymptotic behavior of the Green's functions of random walk. This will involve development of techniques centered around Ancona inequalities, symbolic dynamics and infinite-dimensional Perron-Frobenius theory, and the Lyapunov-Schmidt reduction of infinite systems of algebraic functional equations. Secondary foci of the project will be (a) mathematical problems arising in Bayesian nonparametric function estimation, and (b) stochastic models of epidemics and interspecies competition.Stochastic interacting particle systems are widely used as models in various areas of science, especially in statistical physics and in population biology, but also in the social sciences. It is hoped that studying such processes in infinite hyperbolic geometries will ultimately contribute to understanding their behavior in finite "expander" and "small-worlds" networks, which may better model interactions in various social and ecological systems.
该项目的主要重点将是随机过程的研究随机游动和分支随机游动,接触过程,伊辛模型,双曲群和图上的竞争过程。这些过程中的最后四个过程表现出多个阶段,包括在整数格上看不到的弱生存的中间阶段。研究的一个主要目标将是了解双曲几何约束弱和强生存之间的上相变,以及这反过来又是如何与随机游走的绿色函数的渐近行为。这将涉及围绕安科纳不等式,符号动力学和无限维Perron Frobenius理论,以及代数函数方程的无穷系统的Lyapunov-Schmidt约化技术的发展。该项目的第二个焦点是(a)贝叶斯非参数函数估计中出现的数学问题,以及(B)流行病和物种间竞争的随机模型。随机相互作用粒子系统被广泛用作各个科学领域的模型,特别是在统计物理学和人口生物学中,但也在社会科学中。希望在无限双曲几何中研究这些过程最终有助于理解它们在有限“扩展器”和“小世界”网络中的行为,这可能会更好地模拟各种社会和生态系统中的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Lalley其他文献
Chernoff's distribution and differential equations of parabolic and Airy type
- DOI:
10.1016/j.jmaa.2014.10.051 - 发表时间:
2015-03-15 - 期刊:
- 影响因子:
- 作者:
Piet Groeneboom;Steven Lalley;Nico Temme - 通讯作者:
Nico Temme
Steven Lalley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Lalley', 18)}}的其他基金
Questions at the Interface of Probability and Geometry
概率与几何的交叉问题
- 批准号:
1612979 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Stochastic Epidemic Models and Related Random Processes
随机流行病模型及相关随机过程
- 批准号:
1106669 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Twenty-Third Midwest Probability Colloquium
第二十三届中西部概率研讨会
- 批准号:
0112530 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Research in Stochastic Processes and Nonlinear Filtering
随机过程和非线性滤波研究
- 批准号:
0071970 - 财政年份:2000
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Self-Affine Sets, Random Walks on Discrete Groups, and Thermodynamic Formalism
数学科学:自仿射集、离散群上的随机游动和热力学形式主义
- 批准号:
9307855 - 财政年份:1993
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Probability and Erodic Theory
数学科学:概率研究和侵蚀理论
- 批准号:
9005118 - 财政年份:1990
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic Processes and Partial Differential Equations for problems in Statistics and Machine learning
统计和机器学习中问题的随机过程和偏微分方程
- 批准号:
2129618 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Studentship
Contemporary Problems in Probability and Statistics:Gaussian Approximations and Small Deviations for Stochastic Processes
当代概率与统计问题:随机过程的高斯近似和小偏差
- 批准号:
323605340 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Research Grants
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Some unsolved and new problems on measure-valued stochastic processes
测值随机过程的一些未解决的新问题
- 批准号:
249554-2011 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic Problems for Stochastic Processes and Differential Equations
随机过程和微分方程的渐近问题
- 批准号:
0803287 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
New Stochastic Processes, Partial Differential Equations, and Control Problems Arising in Models of Mechanical Structures Subjected to Vibrations
振动机械结构模型中出现的新随机过程、偏微分方程和控制问题
- 批准号:
0705247 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
L\'evy processes optimal stopping problems and stochastic games
Levy 处理最优停止问题和随机博弈
- 批准号:
EP/D045460/1 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Research Grant