Research in Stochastic Processes

随机过程研究

基本信息

  • 批准号:
    0405102
  • 负责人:
  • 金额:
    $ 26.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

0405102Lalley The principal focus of the project will be on stochastic models of population dynamics and related interacting particle systems. These include models of spatial growth and competition, and models of epidemics and endemics in geographically structured populations. A substantial part of the research will be directed to the behavior of certain interacting systems on noneuclidean and other nonstandard graphs. Particular problems to be investigated will include coexistence of competing species, growth and spread of populations, weak-to-strong survival transitions, and spatial propagation of epidemics and endemics. These have important connections with other developing areas of probability, especially percolation, first-passage percolation, and random graph theory. Secondary foci of the project will be on (1) analytic techniques for studying systems of generating functions, both finite and infinite, especially those that arise in random walk and related combinatorial enumeration problems on tree-like structures; and (2) signal extraction and inference procedures for time series generated by chaotic dynamical systems. Stochastic interacting particle systems are widely used as models in various areas of science, especially in statistical physics and in population biology, but also in economics. These systems consist of "particles" (which in different contexts may represent molecules, biological organisms, economic agents, etc.) that interact in various ways, but generally in a non-deterministic fashion. Mathematical studies of such systems seek to understand how large-scale collective phenomena (such as magnetism, propagation of epidemics in large populations, tumor growth, etc.) arise from and are determined by the details of the individual particle interactions. An important goal of this project is to contribute to our understanding of how the geometry describing the interactions between particles affects the nature of macroscopic behavior, and in particular, to understand how the behavior of certain model particle systems may vary in unusual geometries that may describe social and biological connections in certain animal and human populations.
0405102 Lalley该项目的主要重点将是人口动态和相关的相互作用粒子系统的随机模型。这些模型包括空间增长和竞争模型,以及地理结构人口中的流行病和地方病模型。研究的一个重要部分将是针对某些相互作用的系统在非欧几里德和其他非标准图的行为。特别要调查的问题将包括竞争物种的共存,人口的增长和蔓延,弱到强的生存过渡,以及流行病和地方病的空间传播。这些与概率论的其他发展领域有着重要的联系,特别是渗流、第一通道渗流和随机图论。该项目的第二个重点将是(1)分析技术研究系统的生成函数,有限和无限的,特别是那些出现在随机行走和相关的组合枚举问题的树状结构;和(2)信号提取和推理程序的时间序列产生的混沌动力系统。 随机相互作用粒子系统被广泛用作各个科学领域的模型,特别是在统计物理学和人口生物学中,但也在经济学中。这些系统由“粒子”组成(在不同的语境中可能代表分子、生物有机体、经济主体等)。以各种方式相互作用,但通常以非确定性的方式。对这类系统的数学研究试图理解大规模的集体现象(如磁力、流行病在大量人群中的传播、肿瘤生长等)由单个粒子相互作用的细节产生并决定。该项目的一个重要目标是帮助我们理解描述粒子之间相互作用的几何形状如何影响宏观行为的性质,特别是理解某些模型粒子系统的行为如何在不寻常的几何形状中变化,这些几何形状可能描述某些动物和人类群体中的社会和生物联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Lalley其他文献

Chernoff's distribution and differential equations of parabolic and Airy type
  • DOI:
    10.1016/j.jmaa.2014.10.051
  • 发表时间:
    2015-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Piet Groeneboom;Steven Lalley;Nico Temme
  • 通讯作者:
    Nico Temme

Steven Lalley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Lalley', 18)}}的其他基金

Questions at the Interface of Probability and Geometry
概率与几何的交叉问题
  • 批准号:
    1612979
  • 财政年份:
    2016
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Stochastic Epidemic Models and Related Random Processes
随机流行病模型及相关随机过程
  • 批准号:
    1106669
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Problems in Stochastic Processes: Hyperbolic structures, Bayesian nonparametric estimation, and spatial epidemic and interspecies competition models
随机过程中的问题:双曲结构、贝叶斯非参数估计、空间流行病和种间竞争模型
  • 批准号:
    0805755
  • 财政年份:
    2008
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Twenty-Third Midwest Probability Colloquium
第二十三届中西部概率研讨会
  • 批准号:
    0112530
  • 财政年份:
    2001
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Research in Stochastic Processes and Nonlinear Filtering
随机过程和非线性滤波研究
  • 批准号:
    0071970
  • 财政年份:
    2000
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Topics in Probability
概率论主题
  • 批准号:
    9626590
  • 财政年份:
    1996
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Self-Affine Sets, Random Walks on Discrete Groups, and Thermodynamic Formalism
数学科学:自仿射集、离散群上的随机游动和热力学形式主义
  • 批准号:
    9307855
  • 财政年份:
    1993
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Investigations in Probability and Erodic Theory
数学科学:概率研究和侵蚀理论
  • 批准号:
    9005118
  • 财政年份:
    1990
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantitative research on stochastic processes in random media
随机介质中随机过程的定量研究
  • 批准号:
    21K03286
  • 财政年份:
    2021
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on stochastic processes in random media
随机介质中的随机过程研究
  • 批准号:
    19F19814
  • 财政年份:
    2019
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CRCNS Research Proposal: Stochastic Processes Driving the Ascending Reticular Activating System
CRCNS 研究提案:驱动上升网状激活系统的随机过程
  • 批准号:
    1822517
  • 财政年份:
    2018
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Research on strongly correlated random fields related to stochastic processes
与随机过程相关的强相关随机场研究
  • 批准号:
    18K13429
  • 财政年份:
    2018
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
  • 批准号:
    1715210
  • 财政年份:
    2017
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Tolerance-Enforced Simulation of Stochastic Processes
协作研究:随机过程的容差强制模拟
  • 批准号:
    1720433
  • 财政年份:
    2017
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
  • 批准号:
    1715875
  • 财政年份:
    2017
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Research on Markov processes via stochastic analysis
基于随机分析的马尔可夫过程研究
  • 批准号:
    15H03624
  • 财政年份:
    2015
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Research in Stochastic Processes
合作研究:随机过程研究
  • 批准号:
    1105990
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
Collaborative: Research in Stochastic processes
协作:随机过程研究
  • 批准号:
    1106451
  • 财政年份:
    2011
  • 资助金额:
    $ 26.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了