Statistical Methods for Network Data
网络数据的统计方法
基本信息
- 批准号:1106772
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network data have become common in a wide range of fields, and a large and diverse community of researchers have studied various aspects of networks, yet statistical methods are rarely applied. This project proposes new theory, methodology, and algorithms that take a principled statistical approach to these problems, assess uncertainty, and establish conditions for desirable properties such as consistency. The focus is primarily on discovering community structure in networks, a common phenomenon in practice and a fundamental question in network analysis. New pseudo-likelihood algorithms are proposed for fitting the block model for networks, as well as several generalizations that allow for non-uniform degree distribution within blocks, removing the main limitation of the classic block model. The pseudo-likelihood based on aggregated data substantially speeds up computation, allowing fitting these models to larger and sparser networks than previously possible. The asymptotic distribution of criteria used for community detection is also studied, which leads to development of significance tests for community structure, consistency conditions, and asymptotically correct partition thresholds, which have important practical implications. New, more robust criteria are also proposed, consistent under weaker conditions. The proposal also develops a formal non-parametric test for comparing two networks, a problem that arises frequently in practice but is currently addressed only through informal comparisons of summary statistics. Finally, covariates on nodes and edges are incorporated into the models and used for predicting unobserved links in the networks. Many of the proposed methods provide the first statistical solutions to the corresponding network problems. Development of statistical methods for community detection in networks, while contributing to the development of core statistical theory and methodology, has direct impact on the interdisciplinary field of network analysis and the study of complex networks. The applications of these are wide-spread, covering such diverse areas as infectious disease modeling, national security, communications, sociology, and genomics. The new statistical tools proposed take a more formal, rigorous approach, and have the potential to change how many scientists approach network analysis.
网络数据已经在广泛的领域中变得普遍,并且大量不同的研究人员已经研究了网络的各个方面,但很少应用统计方法。该项目提出了新的理论,方法和算法,对这些问题采取原则性的统计方法,评估不确定性,并为一致性等理想属性建立条件。 重点是发现网络中的社区结构,这是实践中的一种常见现象,也是网络分析中的一个基本问题。 提出了新的伪似然算法来拟合网络的块模型,以及允许块内非均匀度分布的几种推广,消除了经典块模型的主要限制。 基于聚合数据的伪似然大大加快了计算速度,允许将这些模型拟合到比以前更大、更稀疏的网络中。 用于社区检测的标准的渐近分布也进行了研究,从而导致发展的显着性测试社区结构,一致性条件,渐近正确的分区阈值,这具有重要的实际意义。 新的,更强大的标准也提出了,在较弱的条件下一致。 该提案还为比较两个网络制定了正式的非参数测试,这是一个在实践中经常出现的问题,但目前只能通过汇总统计的非正式比较来解决。 最后,节点和边的协变量被纳入模型,并用于预测网络中未观察到的链接。 许多提出的方法提供了相应的网络问题的第一个统计解决方案。 网络社区检测统计方法的发展,在促进核心统计理论和方法的发展的同时,也直接影响着网络分析和复杂网络研究的跨学科领域。 这些技术的应用非常广泛,涵盖了传染病建模、国家安全、通信、社会学和基因组学等不同领域。 提出的新统计工具采用了更正式、更严格的方法,并有可能改变多少科学家接近网络分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizaveta Levina其他文献
Elizaveta Levina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizaveta Levina', 18)}}的其他基金
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
- 批准号:
2052918 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Multivariate Analysis for Samples of Networks
网络样本的多变量分析
- 批准号:
1916222 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
RTG: Understanding dynamic big data with complex structure
RTG:理解结构复杂的动态大数据
- 批准号:
1646108 - 财政年份:2017
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Conference proposal: From Industrial Statistics to Data Science
会议提案:从工业统计到数据科学
- 批准号:
1542123 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Statistical Tools for Analyzing Multiple Networks
用于分析多个网络的统计工具
- 批准号:
1521551 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks
FRG:协作研究:用于分析和发现复杂网络的统一统计理论
- 批准号:
1159005 - 财政年份:2012
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Discovering Sparse Covariance Structures in High Dimensions
发现高维稀疏协方差结构
- 批准号:
0805798 - 财政年份:2008
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Exploiting Special Structures in High-Dimensional Data Classification
在高维数据分类中利用特殊结构
- 批准号:
0505424 - 财政年份:2005
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Statistical Methods for Network-based Integrative Analysis of Microbiome Data
基于网络的微生物组数据综合分析的统计方法
- 批准号:
10708748 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Developments of statistical inference, prediction, and modeling methods for network meta-analysis
网络元分析统计推断、预测和建模方法的发展
- 批准号:
19H04074 - 财政年份:2019
- 资助金额:
$ 29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analytical Tools for Complex Brain Networks: Fusing Novel Statistical Methods and Network Science to Understand Brain Function
复杂大脑网络的分析工具:融合新颖的统计方法和网络科学来理解大脑功能
- 批准号:
9516278 - 财政年份:2018
- 资助金额:
$ 29万 - 项目类别:
Statistical Methods for Big Network Flow Data Analysis
大网络流量数据分析的统计方法
- 批准号:
1954015 - 财政年份:2017
- 资助金额:
$ 29万 - 项目类别:
Studentship
Statistical Methods for Differential Network Biology with Applications to Aging
差异网络生物学的统计方法及其在衰老中的应用
- 批准号:
1561814 - 财政年份:2016
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Statistical Methods for Network-Based Integrative Analysis of CVD Epigenetic Data
基于网络的 CVD 表观遗传数据综合分析统计方法
- 批准号:
9032704 - 财政年份:2015
- 资助金额:
$ 29万 - 项目类别:
Multivariate statistical methods, flow cytometry, and network modeling.
多元统计方法、流式细胞术和网络建模。
- 批准号:
8891463 - 财政年份:2014
- 资助金额:
$ 29万 - 项目类别:
Multivariate statistical methods, flow cytometry, and network modeling.
多元统计方法、流式细胞术和网络建模。
- 批准号:
9056597 - 财政年份:2014
- 资助金额:
$ 29万 - 项目类别:
Statistical Methods for Data with Network Structure
网络结构数据的统计方法
- 批准号:
1407698 - 财政年份:2014
- 资助金额:
$ 29万 - 项目类别:
Standard Grant














{{item.name}}会员




