Statistical Methods for Data with Network Structure
网络结构数据的统计方法
基本信息
- 批准号:1407698
- 负责人:
- 金额:$ 23.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in computing and measurement technologies have led to an explosion in the amounts of data that are being collected in all areas of application. Much of these data have complex structure, in the form of text, images, video, audio, streaming data, and so on. This project focuses on one important class of problems, viz, data with network structure. Such data are common in diverse engineering and scientific areas, such as biology, computer science, electrical engineering, economics, and sociology. While there has been extensive research on networks (primarily outside the field of Statistics), much of it deals with characterizing and modeling network structures using link information only. The goal of the current research program is to exploit the node features as additional information and develop statistical methods that take into account both link and node information. The research program will make significant contributions in several areas, including Statistics, Biology, Computer Science, Electrical Engineering, Physics, Psychology, and Sociology. The educational program also includes substantial initiatives that will involve undergraduate and graduate students and expose them to state-of-the-art research in the topics related to the project.The research aims to develop new statistical methodologies and associated theory that exploit the network structure in the data. Such data are becoming increasingly common in various fields. Specifically, the investigator aims to study three different but related problems: a) link prediction for partially observed networks, which deals with the situation where the network we observe is the true network with observation errors; b) community detection in networks with node features, which combines network link information and additional information on the nodes to improve community detection; c) learning network structures, which deals with the situation where one is interested in identifying the underlying network structure from the data.
计算和测量技术的最新进展导致了在所有应用领域中收集的数据量的爆炸式增长。这些数据大多具有复杂的结构,以文本、图像、视频、音频、流数据等形式存在,本项目主要研究一类重要的问题,即网络结构数据。这些数据在不同的工程和科学领域中很常见,例如生物学,计算机科学,电气工程,经济学和社会学。虽然对网络有广泛的研究(主要是在统计学领域之外),但其中大部分都只使用链接信息来描述和建模网络结构。目前的研究计划的目标是利用节点的功能作为额外的信息,并开发统计方法,考虑到链路和节点的信息。该研究计划将在几个领域做出重大贡献,包括统计学,生物学,计算机科学,电气工程,物理学,心理学和社会学。该教育计划还包括大量的举措,将涉及本科生和研究生,并使他们接触到与该项目相关的主题的最先进的研究。该研究旨在开发新的统计方法和相关理论,利用数据中的网络结构。这些数据在各个领域越来越普遍。具体而言,研究者的目标是研究三个不同但相关的问题:a)部分可观测网络的链接预测,它处理我们所观测的网络是具有观测误差的真实网络的情况; B)具有节点特征的网络中的社区检测,它结合网络链接信息和节点上的附加信息来改进社区检测; c)学习网络结构,其处理人们对从数据识别底层网络结构感兴趣的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji Zhu其他文献
Group Re-identification with Group Context Graph Neural Networks
使用组上下文图神经网络进行组重新识别
- DOI:
10.1109/tmm.2020.3013531 - 发表时间:
2020 - 期刊:
- 影响因子:7.3
- 作者:
Ji Zhu;Hua Yang;Weiyao Lin;Nian Liu;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
Description-based person search with multi-grained matching networks
具有多粒度匹配网络的基于描述的人员搜索
- DOI:
10.1016/j.displa.2021.102039 - 发表时间:
2021-09 - 期刊:
- 影响因子:4.3
- 作者:
Ji Zhu;Hua Yang;Jia Wang;Wenjun Zhang - 通讯作者:
Wenjun Zhang
High-dimensional Factor Analysis for Network-linked Data
网络链接数据的高维因子分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jinming Li;Gongjun Xu;Ji Zhu - 通讯作者:
Ji Zhu
Pelvic recurrence after definitive surgery for locally advanced rectal cancer: a retrospective investigation of implications for precision radiotherapy field design
局部晚期直肠癌根治性手术后盆腔复发:精准放疗野设计影响的回顾性研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chao Li;Y. Zhu;T. Tong;Ye Xu;Y. Guan;Jingwen Wang;Huankun Wang;Ji Zhu - 通讯作者:
Ji Zhu
Solving Capacitated Vehicle Routing Problem by an Improved Genetic Algorithm with Fuzzy C-Means Clustering
- DOI:
10.1155/2022/8514660 - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Ji Zhu - 通讯作者:
Ji Zhu
Ji Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji Zhu', 18)}}的其他基金
Statistical Modeling for Complex Networks
复杂网络的统计建模
- 批准号:
2210439 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Collaborative Research: New Statistical Learning for Complex Heterogeneous Data
协作研究:复杂异构数据的新统计学习
- 批准号:
1821243 - 财政年份:2018
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Conference on Statistical Learning and Data Mining
统计学习与数据挖掘会议
- 批准号:
1203216 - 财政年份:2012
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
CAREER: Statistical Learning from Data with Graph/Network Structures
职业:从具有图/网络结构的数据中进行统计学习
- 批准号:
0748389 - 财政年份:2008
- 资助金额:
$ 23.96万 - 项目类别:
Continuing Grant
Collaborative Research: Generalized Variable Selection With Applications To Functional Data Analysis And Other Problems
协作研究:广义变量选择及其在函数数据分析和其他问题中的应用
- 批准号:
0705532 - 财政年份:2007
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Flexible Classification and Regression
灵活的分类和回归
- 批准号:
0505432 - 财政年份:2005
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Discovery Projects
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 23.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Statistical Methods for Response Process Data
响应过程数据的统计方法
- 批准号:
2310664 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Statistical Methods for Human Glycome Data Analysis
人类糖组数据分析的统计方法
- 批准号:
23K11021 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
- 批准号:
2326317 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Standard Grant