Exploiting Special Structures in High-Dimensional Data Classification
在高维数据分类中利用特殊结构
基本信息
- 批准号:0505424
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTProposed research develops new practical methodology and algorithms aswell as theoretical results for high-dimensional data classification. Themain issue is that when the number of measured variables exceeds by farthe number of observations, estimating the full covariance matrixaccurately is impossible. The investigator has previously shown thatignoring the dependence completely in such a situation is a better option,but it means discarding a lot of information. This problem will beresolved by developing new sparse covariance estimators which will onlyretain important dependence information, and studying their behaviortheoretically in the context of discriminant analysis. New practical,computationally efficient algorithms for computing these estimators fromdata will be developed on the basis of clustering and graph partitioningmethods and compared to existing regularization techniques. Theoretically,asymptotically optimal or near optimal classification performance isexpected to be demonstrated. Another way to reduce the size of theproblem and get to the underlying structure is to reduce the datadimension using recently developed nonlinear manifold projection methods,which aim to discover a nonlinear low-dimensional embedding preservingmost of the information contained in the data. Using these methodsrequires estimating intrinsic data dimension and neighborhood scale on amanifold, and new rigorous estimators for both are proposed, along with ananalysis of their statistical properties. Careful estimation of these twoparameters will improve on the current mostly heuristic methods used inmachine learning and increase applicability of manifold projection methodsfor high-dimensional data classification.This proposal addresses the new challenges posed by the massive amounts ofdata collected in the modern world by developing new theoretical andpractical tools for dealing with high-dimensional data, particularly withthe situation when the number of measurements taken for one observation islarge relative to the number of observations. New sparse estimators ofdependence structure in such data are developed, which only contain theinformation relevant for data classification. The new estimators can alsobe used in any problem where large covariance matrices need to beestimated from limited amount of data, and hence will have an impact on awide range of modern applications, such as classification and analysis ofgene expression data, analysis of complex chemical and physicalexperiments, remote sensing, and medical imaging, among others.
摘要所提出的研究开发了新的实用方法和算法以及高维数据分类的理论结果。主要问题是,当测量变量的数量远远超过观测值的数量时,准确估计完整的协方差矩阵是不可能的。研究人员之前已经表明,在这种情况下完全忽略依赖性是一个更好的选择,但这意味着丢弃大量信息。 这个问题将通过开发新的稀疏协方差估计器来解决,该估计器将只保留重要的依赖信息,并在判别分析的背景下从理论上研究它们的行为。将在聚类和图划分方法的基础上开发用于根据数据计算这些估计量的新的实用的、计算高效的算法,并与现有的正则化技术进行比较。理论上,渐进最优或接近最优的分类性能有望得到证明。 减少问题规模并了解底层结构的另一种方法是使用最近开发的非线性流形投影方法来减少数据维度,其目的是发现保留数据中包含的大部分信息的非线性低维嵌入。使用这些方法需要估计流形上的内在数据维度和邻域尺度,并且提出了两者的新严格估计器,以及对其统计特性的分析。 对这两个参数的仔细估计将改进当前机器学习中使用的大多数启发式方法,并提高流形投影方法在高维数据分类中的适用性。该提案通过开发处理高维数据的新理论和实用工具,特别是在一次观测所采取的测量次数较多的情况下,解决了现代世界收集的大量数据所带来的新挑战。 相对于观测值的数量来说很大。 开发了此类数据中依赖结构的新稀疏估计器,其仅包含与数据分类相关的信息。 新的估计器还可以用于需要从有限数量的数据中估计大型协方差矩阵的任何问题,因此将对广泛的现代应用产生影响,例如基因表达数据的分类和分析、复杂的化学和物理实验的分析、遥感和医学成像等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizaveta Levina其他文献
Elizaveta Levina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizaveta Levina', 18)}}的其他基金
FRG: Collaborative Research: Flexible Network Inference
FRG:协作研究:灵活的网络推理
- 批准号:
2052918 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Multivariate Analysis for Samples of Networks
网络样本的多变量分析
- 批准号:
1916222 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
RTG: Understanding dynamic big data with complex structure
RTG:理解结构复杂的动态大数据
- 批准号:
1646108 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference proposal: From Industrial Statistics to Data Science
会议提案:从工业统计到数据科学
- 批准号:
1542123 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Tools for Analyzing Multiple Networks
用于分析多个网络的统计工具
- 批准号:
1521551 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks
FRG:协作研究:用于分析和发现复杂网络的统一统计理论
- 批准号:
1159005 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Discovering Sparse Covariance Structures in High Dimensions
发现高维稀疏协方差结构
- 批准号:
0805798 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
非阶化Hamiltonial型和Special型李代数的表示
- 批准号:10701002
- 批准年份:2007
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A HIstorical Study on the Structures and Dynamics of Special Education during the High Growth Period in Japan : From the Perspective of Movement and Gender
日本高增长时期特殊教育的结构和动态的历史研究:从运动和性别的角度
- 批准号:
21K02710 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Methods for Large Algebraic Eigenproblems with Special Structures
具有特殊结构的大型代数本征问题的计算方法
- 批准号:
2111496 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
- 批准号:
RGPIN-2019-03933 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Special functions and combinatorics arising from parametric deformations of representation-theoretical structures
由表示理论结构的参数变形产生的特殊函数和组合数学
- 批准号:
18K03248 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Special geometric structures and integrability
特殊的几何结构和可积性
- 批准号:
1941916 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
pursuing global essences of manifolds with geometric structures via special surgeries
通过特殊手术追求几何结构流形的全局本质
- 批准号:
17K05236 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Method of Generalized Influence functions - Adjoint Sensitivity Analysis for the Effective and Efficient Numerical Design of Structures with special Application for Reliability and Uncertainty Modelling, 2nd research period
广义影响函数方法 - 有效且高效的结构数值设计的伴随敏感性分析,特别应用于可靠性和不确定性建模,第二研究期
- 批准号:
312865274 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes














{{item.name}}会员




