Stability and Dynamics of Traveling Waves, and Boundary Layer Theory

行波的稳定性和动力学以及边界层理论

基本信息

  • 批准号:
    1108821
  • 负责人:
  • 金额:
    $ 11.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

The principal investigator will study mathematical problems regarding the existence, stability and instability, asymptotic analysis, and long-time dynamics of structural solutions of systems of partial differential equations. The study is divided into two independent projects. The first project concerns the stability properties of one-dimensional sources of reaction-diffusion systems that are temporally- and spatially-periodic traveling waves with defects. Pointwise Green function and Evans function techniques are exploited to investigate nonlinear stability and long-time dynamics of sources. The second project regards the vanishing viscosity limit problem of the incompressible Navier-Stokes equations in the presence of impermeable boundaries. Topics that will be addressed include the well-posedness of the Prandtl boundary-layer equation, the validity of asymptotic boundary-layer expansions, and fluid-structure interactions. The primary goal of these projects is to provide a mathematically rigorous investigation into these structural solutions and boundary-layer phenomena in fluid dynamics. The mathematical research projects that will be undertaken are motivated by many scientific disciplines including oceanography, aerodynamics, fluid dynamics, and the dynamics of biological and chemical reactions. The objects of this study, namely traveling waves, boundary layers, and coherent structures, their stability properties and their dynamics are of fundamental importance in biology, engineering, and physics. The primary goal of this research is to provide mathematical understanding of the stability properties of these structural solutions and to develop analytical methods that can be of practical use in biology, engineering, physics, and manufacturing. Among many others, one particular practical use of the study of boundary layers is to provide fundamental principles that help engineers to calculate the friction drag of a ship, an airfoil, or the body of an airplane, and to help determining an efficient shape of the body in order to minimize the friction drag and to reduce turbulence. Another objective of this research is to study the effect of viscosity in fluid motion, and to mathematically justify phenomena related to boundary layers that have been observed in experiments. Results of this research will be disseminated through presentations at national and international conferences, seminars and publications in scientific journals.
主要研究者将研究关于偏微分方程系统的结构解的存在性,稳定性和不稳定性,渐近分析和长时间动态的数学问题。该研究分为两个独立的项目。第一个项目涉及的一维源的反应扩散系统的时间和空间周期行波缺陷的稳定性。利用逐点绿色函数和Evans函数技术研究了源的非线性稳定性和长时间动力学。第二个项目涉及存在不可渗透边界时不可压缩Navier-Stokes方程的消失粘性极限问题。将讨论的主题包括普朗特边界层方程的适定性,渐近边界层展开的有效性,以及流体-结构相互作用。这些项目的主要目标是提供一个数学上严格的调查,这些结构的解决方案和边界层现象的流体动力学。将进行的数学研究项目是由许多科学学科,包括海洋学,空气动力学,流体动力学,以及生物和化学反应的动力学的动机。本研究的对象,即行波,边界层和相干结构,它们的稳定性和动力学特性在生物学,工程学和物理学中具有根本的重要性。本研究的主要目标是提供这些结构解决方案的稳定性的数学理解,并开发分析方法,可以在生物学,工程,物理学和制造业的实际用途。其中,边界层研究的一个特殊的实际用途是提供基本原理,帮助工程师计算船舶、机翼或飞机机身的摩擦阻力,并帮助确定有效的机身形状,以最大限度地减少摩擦阻力和减少湍流。本研究的另一个目的是研究粘性在流体运动中的作用,并从数学上证明实验中观察到的与边界层相关的现象。这项研究的结果将通过在国家和国际会议、研讨会上的介绍以及在科学杂志上发表文章的方式传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toan Nguyen其他文献

Fault-proneモジュール予測に対するコメント記述量の効果に関する考察
考虑评论量对易错模块预测的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toan Nguyen;Hideyuki Jitsumoto;Naoya Maruyama;Tatsuo Nomura;Toshio Endo;Satoshi Matsuoka;阿萬裕久
  • 通讯作者:
    阿萬裕久
‘Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists’: reply to Sammer et al.
“高级和初级放射科医生对人工智能辅助检测儿童和年轻人附肢骨骼骨折的评估”:对 Sammer 等人的答复。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Toan Nguyen;Richard Maarek;A. Hermann;Amina Kammoun;Antoine Marchi;Mohamed R. Khelifi;Mégane Collin;Alienor Jaillard;A. Kompel;D. Hayashi;A. Guermazi;H. Ducou le Pointe
  • 通讯作者:
    H. Ducou le Pointe
Kid on the phone! Toward automatic detection of children on mobile devices
  • DOI:
    10.1016/j.cose.2019.04.001
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Toan Nguyen;Roy, Aditi;Memon, Nasir
  • 通讯作者:
    Memon, Nasir
High performance for bone age estimation with an artificial intelligence solution.
通过人工智能解决方案进行高性能骨龄估计。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Toan Nguyen;A. Hermann;J. Ventre;Alexis Ducarouge;Aloïs Pourchot;Vincent Marty;N. Regnard;A. Guermazi
  • 通讯作者:
    A. Guermazi
Is sex ratio a valid distribution factor in a collective model?
性别比例在集体模型中是一个有效的分配因素吗?
  • DOI:
    10.1016/j.labeco.2024.102647
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Yujung Hwang;Toan Nguyen
  • 通讯作者:
    Toan Nguyen

Toan Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toan Nguyen', 18)}}的其他基金

Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
  • 批准号:
    2349981
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
Mathematical Questions in Kinetic Theory
动力学理论中的数学问题
  • 批准号:
    2054726
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
  • 批准号:
    1764119
  • 财政年份:
    2018
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Continuing Grant
Dynamics of Wave Structures in Fluid Dynamics, Oscillatory Media, and Plasma Physics
流体动力学、振荡介质和等离子体物理中的波结构动力学
  • 批准号:
    1405728
  • 财政年份:
    2014
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
  • 批准号:
    1338643
  • 财政年份:
    2013
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了