Dynamics of Wave Structures in Fluid Dynamics, Oscillatory Media, and Plasma Physics
流体动力学、振荡介质和等离子体物理中的波结构动力学
基本信息
- 批准号:1405728
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research will investigate the dynamics of boundary layers, coherent structures, and plasma equilibria. These objects are expressed as special solutions to mathematical models involving partial differential equations and have been widely used in various scientific disciplines. They are for instance of fundamental importance in biology, engineering, and physics. Utilizing boundary layer theory, engineers are able to significantly simplify the analysis of fluid flows near a solid body, such as a ship, or an airplane. This has proven exceptionally useful in aerodynamics. The PI will develop mathematical tools to study the validity of boundary layer simplifications of viscous flows, and thereby provide a deeper understanding of physical observations and laboratory experiments. The PI will also establish mathematical criteria, under which coherent structures in oscillatory media and equilibria of a plasma are well behaved under disturbances. The search for a stability criterion is important in practice, for instance, in helping engineers design stable devices, which could otherwise be damaged by unstable waves. The research focuses on mathematical questions concerned with the dynamics of boundary layers in fluid dynamics, the stability of coherent structures in oscillatory media, and the magnetic confinement of a plasma. The mathematical equations to be considered include the incompressible Euler and Navier-Stokes equations, general reaction-diffusion systems, and the relativistic Vlasov-Maxwell systems. Generic boundary layers of the Navier-Stokes equations are analytically shown to be spectrally unstable for sufficiently large Reynolds numbers. The PI will develop a nonlinear theory, building on the Fourier-Laplace transformed approach and the Evans function techniques, to prove the invalidity of boundary layer approximations in the vanishing viscosity limit. The research will also provide an understanding of the complete dynamics of nonlinear solutions near spectrally stable source defects. The PI will develop a novel nonlinear iteration scheme to study the stability properties of time-periodic traveling wave solutions, based on the spatial-dynamics techniques and the pointwise one-dimensional Green's function approach. Finally, the PI will initiate new investigations on magnetic mechanisms to confine a plasma modeled by the relativistic Vlasov-Maxwell systems.
该研究将研究边界层,相干结构和血浆平衡的动力学。这些对象表示为涉及部分微分方程的数学模型的特殊解决方案,并已广泛用于各种科学学科。它们在生物学,工程和物理学中具有根本重要性。利用边界层理论,工程师能够显着简化对固体体(例如船体或飞机)附近的流体流的分析。事实证明,这在空气动力学中非常有用。 PI将开发数学工具来研究粘性流的边界层简化的有效性,从而更深入地了解物理观察和实验室实验。 PI还将建立数学标准,根据该标准,在振荡培养基中的相干结构和等离子体的平衡在干扰下表现得很好。例如,在实践中搜索稳定标准很重要,例如,在帮助工程师设计稳定的设备时,否则这些设备可能会因不稳定的波浪而损坏。该研究的重点是与流体动力学中边界层的动力学有关的数学问题,振荡培养基中相干结构的稳定性以及等离子体的磁性约束。要考虑的数学方程包括不可压缩的Euler和Navier-Stokes方程,一般反应扩散系统以及相对论Vlasov-Maxwell Systems。在分析上,Navier-Stokes方程的通用边界层在足够大的雷诺数上在频谱上是不稳定的。 PI将发展一个非线性理论,建立在傅立叶式转换方法和Evans功能技术的基础上,以证明在消失的粘度极限中边界层近似的无效性。这项研究还将提供对光谱稳定源缺陷附近非线性溶液的完整动力学的理解。 PI将开发一种新型的非线性迭代方案,以研究基于空间动力学技术和尖锐的一维绿色功能方法,研究时间周期性波动波解决方案的稳定性。最后,PI将启动有关磁性机制的新研究,以局限以相对论Vlasov-Maxwell Systems建模的等离子体。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform in Time Lower Bound for Solutions to a Quantum Boltzmann Equation of Bosons
- DOI:10.1007/s00205-018-1271-z
- 发表时间:2016-05
- 期刊:
- 影响因子:2.5
- 作者:Toan T. Nguyen;Minh-Binh Tran
- 通讯作者:Toan T. Nguyen;Minh-Binh Tran
Sharp bounds for the resolvent of linearized Navier Stokes equations in the half space around a shear profile
剪切剖面周围半空间中线性纳维斯托克斯方程求解的锐界
- DOI:10.1016/j.jde.2020.06.046
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Grenier, Emmanuel;Nguyen, Toan T.
- 通讯作者:Nguyen, Toan T.
The Inviscid Limit of Navier–Stokes Equations for Analytic Data on the Half-Space
半空间解析数据纳维斯托克斯方程的无粘极限
- DOI:10.1007/s00205-018-1266-9
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Nguyen, Toan T.;Nguyen, Trinh T.
- 通讯作者:Nguyen, Trinh T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toan Nguyen其他文献
Type a Bax Channels: Electrophysiological Properties
- DOI:
10.1016/j.bpj.2011.11.591 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shang H. Lin;Meenu N. Perera;Toan Nguyen;Marco Colombini - 通讯作者:
Marco Colombini
High performance for bone age estimation with an artificial intelligence solution.
通过人工智能解决方案进行高性能骨龄估计。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Toan Nguyen;A. Hermann;J. Ventre;Alexis Ducarouge;Aloïs Pourchot;Vincent Marty;N. Regnard;A. Guermazi - 通讯作者:
A. Guermazi
Antibodies to neurofascin exacerbate adoptive transfer experimental autoimmune neuritis
神经成束蛋白抗体加剧过继转移实验性自身免疫性神经炎
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
Weixing Yan;Toan Nguyen;N. Yuki;Qiuhong Ji;C. Yiannikas;J. Pollard;E. Mathey - 通讯作者:
E. Mathey
Type a Bax Channels: The Highly Voltage-Gated Form of this Killer Protein
- DOI:
10.1016/j.bpj.2012.11.3642 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
Shang H. Lin;Meenu N. Perera;Toan Nguyen;Marco Colombini - 通讯作者:
Marco Colombini
FFCDH: Solution to Enable Face-to-Face Conversation between Deaf and Hearing People
FFCDH:聋哑人与听力正常人之间进行面对面对话的解决方案
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
O. O. Mwambe;Shelena Soosay Nathan;Toan Nguyen;E. Kamioka - 通讯作者:
E. Kamioka
Toan Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Toan Nguyen', 18)}}的其他基金
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
- 批准号:
2349981 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Questions in Kinetic Theory
动力学理论中的数学问题
- 批准号:
2054726 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
- 批准号:
1764119 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
- 批准号:
1338643 - 财政年份:2013
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
- 批准号:
1108821 - 财政年份:2011
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
- 批准号:52308507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地震-海啸及台风-海浪等多重灾害作用下近海风机结构抗灾可靠性研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
基于MIMO雷达的海面成像和信息反演理论与方法
- 批准号:61871143
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
高性能组合桥墩跨海大桥抗震性能分析及设计方法研究
- 批准号:51678406
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
随机海浪干扰下的无人水面艇编队分布式协同控制
- 批准号:61503158
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2314687 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2037565 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2037563 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Nonlinear spin wave dynamics in thin magnetic films and structures
磁性薄膜和结构中的非线性自旋波动力学
- 批准号:
259181367 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Research Grants