Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
基本信息
- 批准号:1338643
- 负责人:
- 金额:$ 4.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-02 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study mathematical problems regarding the existence, stability and instability, asymptotic analysis, and long-time dynamics of structural solutions of systems of partial differential equations. The study is divided into two independent projects. The first project concerns the stability properties of one-dimensional sources of reaction-diffusion systems that are temporally- and spatially-periodic traveling waves with defects. Pointwise Green function and Evans function techniques are exploited to investigate nonlinear stability and long-time dynamics of sources. The second project regards the vanishing viscosity limit problem of the incompressible Navier-Stokes equations in the presence of impermeable boundaries. Topics that will be addressed include the well-posedness of the Prandtl boundary-layer equation, the validity of asymptotic boundary-layer expansions, and fluid-structure interactions. The primary goal of these projects is to provide a mathematically rigorous investigation into these structural solutions and boundary-layer phenomena in fluid dynamics. The mathematical research projects that will be undertaken are motivated by many scientific disciplines including oceanography, aerodynamics, fluid dynamics, and the dynamics of biological and chemical reactions. The objects of this study, namely traveling waves, boundary layers, and coherent structures, their stability properties and their dynamics are of fundamental importance in biology, engineering, and physics. The primary goal of this research is to provide mathematical understanding of the stability properties of these structural solutions and to develop analytical methods that can be of practical use in biology, engineering, physics, and manufacturing. Among many others, one particular practical use of the study of boundary layers is to provide fundamental principles that help engineers to calculate the friction drag of a ship, an airfoil, or the body of an airplane, and to help determining an efficient shape of the body in order to minimize the friction drag and to reduce turbulence. Another objective of this research is to study the effect of viscosity in fluid motion, and to mathematically justify phenomena related to boundary layers that have been observed in experiments. Results of this research will be disseminated through presentations at national and international conferences, seminars and publications in scientific journals.
主要研究偏微分方程组结构解的存在性、稳定性和不稳定性、渐近分析和长期动力学等数学问题。这项研究分为两个独立的项目。第一个项目涉及一维反应扩散系统的稳定性特性,这些系统是具有缺陷的时间和空间周期行波。利用点向格林函数和埃文斯函数技术研究了源的非线性稳定性和长时间动力学。第二个项目研究不可压缩Navier-Stokes方程在不渗透边界存在下的消失粘度极限问题。将讨论的主题包括普朗特边界层方程的适定性、渐近边界层展开的有效性以及流固耦合。这些项目的主要目标是对流体动力学中的这些结构解和边界层现象进行数学上严格的研究。将进行的数学研究项目受到许多科学学科的推动,包括海洋学,空气动力学,流体动力学以及生物和化学反应动力学。本研究的对象是行波、边界层和相干结构,它们的稳定性和动力学特性在生物学、工程学和物理学中具有重要的基础意义。本研究的主要目标是提供对这些结构溶液稳定性特性的数学理解,并开发可在生物学、工程、物理学和制造业中实际使用的分析方法。在许多其他研究中,边界层研究的一个特殊实际用途是提供基本原理,帮助工程师计算船舶、机翼或飞机机身的摩擦阻力,并帮助确定机身的有效形状,以尽量减少摩擦阻力和减少湍流。本研究的另一个目的是研究流体运动中粘度的影响,并从数学上证明在实验中观察到的与边界层有关的现象。这项研究的结果将通过在国家和国际会议、研讨会和科学期刊上发表的报告来传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toan Nguyen其他文献
Fault-proneモジュール予測に対するコメント記述量の効果に関する考察
考虑评论量对易错模块预测的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Toan Nguyen;Hideyuki Jitsumoto;Naoya Maruyama;Tatsuo Nomura;Toshio Endo;Satoshi Matsuoka;阿萬裕久 - 通讯作者:
阿萬裕久
‘Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists’: reply to Sammer et al.
“高级和初级放射科医生对人工智能辅助检测儿童和年轻人附肢骨骼骨折的评估”:对 Sammer 等人的答复。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Toan Nguyen;Richard Maarek;A. Hermann;Amina Kammoun;Antoine Marchi;Mohamed R. Khelifi;Mégane Collin;Alienor Jaillard;A. Kompel;D. Hayashi;A. Guermazi;H. Ducou le Pointe - 通讯作者:
H. Ducou le Pointe
Kid on the phone! Toward automatic detection of children on mobile devices
- DOI:
10.1016/j.cose.2019.04.001 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:5.6
- 作者:
Toan Nguyen;Roy, Aditi;Memon, Nasir - 通讯作者:
Memon, Nasir
High performance for bone age estimation with an artificial intelligence solution.
通过人工智能解决方案进行高性能骨龄估计。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Toan Nguyen;A. Hermann;J. Ventre;Alexis Ducarouge;Aloïs Pourchot;Vincent Marty;N. Regnard;A. Guermazi - 通讯作者:
A. Guermazi
Type a Bax Channels: Electrophysiological Properties
- DOI:
10.1016/j.bpj.2011.11.591 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shang H. Lin;Meenu N. Perera;Toan Nguyen;Marco Colombini - 通讯作者:
Marco Colombini
Toan Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Toan Nguyen', 18)}}的其他基金
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
- 批准号:
2349981 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Mathematical Questions in Kinetic Theory
动力学理论中的数学问题
- 批准号:
2054726 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
- 批准号:
1764119 - 财政年份:2018
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Dynamics of Wave Structures in Fluid Dynamics, Oscillatory Media, and Plasma Physics
流体动力学、振荡介质和等离子体物理中的波结构动力学
- 批准号:
1405728 - 财政年份:2014
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
- 批准号:
1108821 - 财政年份:2011
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 4.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




