The Inviscid Limit and Large Time Behavior of Fluid Flows
流体流动的无粘极限和长时间行为
基本信息
- 批准号:1764119
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project studies the motion of fluids such as water or air moving past solid objects such as a ship or an airfoil. A particular focus will be on studying the thin layers that emerge near the surface of solid objects. The research will provide a more accurate description of the fluid motion that involves several thin layers with different length scales and a better understanding of the transition from laminar to turbulent flows. The study will help to better calculate the skin friction drag on an airfoil and the heat transfer between a body and the fluid around it. The project will include research activities that train graduate students. The project proves the instability of generic boundary layers, constructs multi-layer solutions to classical Navier-Stokes equations with small viscosity in domains with a boundary, and studies the damping mechanism of fluid flows at the large time. The goal is to elucidate the new understanding of viscous boundary layers. The main approach will involve the spectral analysis and resolvent estimates of linearized Navier-Stokes equations near generic shear flows. The study of fluid damping will make use of techniques that are adapted from dispersive equations and quantum theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目研究流体的运动,如水或空气流过固体物体,如船或机翼。一个特别的重点将是研究固体物体表面附近出现的薄层。这项研究将提供一个更准确的描述流体运动,涉及几个不同长度尺度的薄层,并更好地了解从层流到湍流的过渡。该研究将有助于更好地计算翼型表面摩擦阻力以及物体与周围流体之间的热传递。该项目将包括培养研究生的研究活动。 该项目证明了一般边界层的不稳定性,在具有边界的区域中构造了具有小粘性的经典Navier-Stokes方程的多层解,并研究了大时间内流体流动的阻尼机制。目的是阐明粘性边界层的新认识。主要的方法将涉及谱分析和预解估计的线性化Navier-Stokes方程附近的一般剪切流。流体阻尼的研究将利用色散方程和量子理论改编的技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Onsager-type conjecture and renormalized solutions for the relativistic Vlasov–Maxwell system
- DOI:10.1090/qam/1549
- 发表时间:2019-03
- 期刊:
- 影响因子:0.8
- 作者:C. Bardos;N. Besse;Toan T. Nguyen
- 通讯作者:C. Bardos;N. Besse;Toan T. Nguyen
On the Linearized Vlasov–Poisson System on the Whole Space Around Stable Homogeneous Equilibria
关于稳定齐次平衡全空间上的线性化Vlasov-Poisson系统
- DOI:10.1007/s00220-021-04228-2
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Han-Kwan, Daniel;Nguyen, Toan T.;Rousset, Frédéric
- 通讯作者:Rousset, Frédéric
Asymptotic Stability of Equilibria for Screened Vlasov–Poisson Systems via Pointwise Dispersive Estimates
通过逐点色散估计筛选 Vlasov-Poisson 系统平衡点的渐近稳定性
- DOI:10.1007/s40818-021-00110-5
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Han-Kwan, Daniel;Nguyen, Toan T.;Rousset, Frédéric
- 通讯作者:Rousset, Frédéric
Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria
围绕彭罗斯稳定平衡筛选的弗拉索夫-泊松系统的导数估计
- DOI:10.3934/krm.2020043
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:T. Nguyen, Trinh
- 通讯作者:T. Nguyen, Trinh
On Global Stability of Optimal Rearrangement Maps
论最优重排图的全局稳定性
- DOI:10.1007/s00205-020-01552-0
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Nguyen, Huy Q.;Nguyen, Toan T.
- 通讯作者:Nguyen, Toan T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toan Nguyen其他文献
Fault-proneモジュール予測に対するコメント記述量の効果に関する考察
考虑评论量对易错模块预测的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Toan Nguyen;Hideyuki Jitsumoto;Naoya Maruyama;Tatsuo Nomura;Toshio Endo;Satoshi Matsuoka;阿萬裕久 - 通讯作者:
阿萬裕久
‘Assessment of an artificial intelligence aid for the detection of appendicular skeletal fractures in children and young adults by senior and junior radiologists’: reply to Sammer et al.
“高级和初级放射科医生对人工智能辅助检测儿童和年轻人附肢骨骼骨折的评估”:对 Sammer 等人的答复。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Toan Nguyen;Richard Maarek;A. Hermann;Amina Kammoun;Antoine Marchi;Mohamed R. Khelifi;Mégane Collin;Alienor Jaillard;A. Kompel;D. Hayashi;A. Guermazi;H. Ducou le Pointe - 通讯作者:
H. Ducou le Pointe
Kid on the phone! Toward automatic detection of children on mobile devices
- DOI:
10.1016/j.cose.2019.04.001 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:5.6
- 作者:
Toan Nguyen;Roy, Aditi;Memon, Nasir - 通讯作者:
Memon, Nasir
High performance for bone age estimation with an artificial intelligence solution.
通过人工智能解决方案进行高性能骨龄估计。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Toan Nguyen;A. Hermann;J. Ventre;Alexis Ducarouge;Aloïs Pourchot;Vincent Marty;N. Regnard;A. Guermazi - 通讯作者:
A. Guermazi
Type a Bax Channels: Electrophysiological Properties
- DOI:
10.1016/j.bpj.2011.11.591 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Shang H. Lin;Meenu N. Perera;Toan Nguyen;Marco Colombini - 通讯作者:
Marco Colombini
Toan Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Toan Nguyen', 18)}}的其他基金
Survival Threshold for Collective Plasma Oscillations
集体等离子体振荡的生存阈值
- 批准号:
2349981 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Questions in Kinetic Theory
动力学理论中的数学问题
- 批准号:
2054726 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Dynamics of Wave Structures in Fluid Dynamics, Oscillatory Media, and Plasma Physics
流体动力学、振荡介质和等离子体物理中的波结构动力学
- 批准号:
1405728 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
- 批准号:
1338643 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Stability and Dynamics of Traveling Waves, and Boundary Layer Theory
行波的稳定性和动力学以及边界层理论
- 批准号:
1108821 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Self-excitation, Limit Cycle Oscillations, and Control of Large Deflection Plate Models in Engineering Applications
工程应用中大偏转板模型的自激、极限循环振荡和控制
- 批准号:
2307538 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
- 批准号:
EP/Y001478/1 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Large N limit of the stochastic Yang-Mills model
随机 Yang-Mills 模型的大 N 极限
- 批准号:
2771450 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Studentship
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
- 批准号:
2206038 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Examining topological solitons and instantons in the limit of large topological charge
在大拓扑电荷极限下检查拓扑孤子和瞬时子
- 批准号:
568729-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Postgraduate Scholarships - Doctoral
Redefining Large-Scale Functional Network Models of Posttraumatic Stress Disorder through Resolution Limit-Free Community Detection
通过分辨率无限制的社区检测重新定义创伤后应激障碍的大规模功能网络模型
- 批准号:
10213605 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Redefining Large-Scale Functional Network Models of Posttraumatic Stress Disorder through Resolution Limit-Free Community Detection
通过分辨率无限制的社区检测重新定义创伤后应激障碍的大规模功能网络模型
- 批准号:
10066765 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Large Genus Limit of Energy Minimizing Compact Minimal Surfaces in the 3-Sphere
3-球体中能量最小化紧极小曲面的大亏格极限
- 批准号:
441840982 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Priority Programmes
Large Scale Asymptotics of Random Spatial Processes: Scaling Exponents, Limit Shapes, and Phase Transitions
随机空间过程的大规模渐近:缩放指数、极限形状和相变
- 批准号:
1855688 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Theoretical Study of Black hole dynamics in Higher dimensional gravity using the large D limit
使用大 D 极限的高维引力中黑洞动力学的理论研究
- 批准号:
18K13541 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists