Different curvature flows and their long time behaviour
不同曲率流及其长期行为
基本信息
- 批准号:1110145
- 负责人:
- 金额:$ 11.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-30 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposer is interested in a long time behaviour of different parabolic flows, such as the Ricci flow, the Yamabe flow and different curvature flows of hypersurfaces in the euclidean space. More precisely, the proposer would like to understand the structure of possible singular limiting metrics one gets. Since the ancient solutions occur as singularity models of finite time singularities, the proposer suggests to study the properties and the classification of those in the case of different flows. One special case of ancient solutions are the gradient shrinking solitons. There is much to be understood about their geometric properties especially in the complete higher dimensional cases which can help the classification of those. Related to the singularities I the proposer also suggests studying the optimal conditions under which one can guarantee the existence of a smooth solution to e.g. the Ricci flow and the mean curvature flow.The proposer is interested in studying different parabolic geometric flows since their parabolic properties tend to improve the properties of the initial geometric objects. For example, under certain conditions on the initial metric the Ricci flow tends to exist forever and converges to a metric of constant sectional curvature which tells us a lot about the topology of our manifold. That means one can sometimes use the parabolic geometric flows in order to resolve some issues in other mathematical fields. Ancient solutions are the solutions that come from all the way from negative infinity. The physicists are interested in understanding those solutions to the Ricci flow.
提出者对不同抛物线流的长期行为感兴趣,例如 Ricci 流、Yamabe 流和欧几里得空间中超曲面的不同曲率流。更准确地说,提议者希望了解可能获得的单一限制指标的结构。由于古代的解决方案是作为有限时间奇点的奇点模型出现的,因此提议者建议研究不同流情况下的属性和分类。古代解决方案的一种特殊情况是梯度收缩孤子。关于它们的几何特性有很多需要理解,特别是在完整的高维情况下,这可以帮助对它们进行分类。与奇点 I 相关,提议者还建议研究最佳条件,在该条件下可以保证存在平滑解决方案,例如里奇流和平均曲率流。提议者有兴趣研究不同的抛物线几何流,因为它们的抛物线特性往往会改善初始几何对象的特性。例如,在初始度量的某些条件下,里奇流倾向于永远存在并收敛到恒定截面曲率的度量,这告诉我们很多有关流形拓扑的信息。这意味着有时可以使用抛物线几何流来解决其他数学领域的一些问题。古代的解是从负无穷一路而来的解。物理学家有兴趣了解里奇流的这些解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasa Sesum其他文献
Evolution of locally convex closed curves in the area-preserving and length-preserving curvature flows.
面积保持和长度保持曲率流中局部凸闭合曲线的演化。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
Natasa Sesum;Dong-Ho Tsai;Xiao-Liu Wang - 通讯作者:
Xiao-Liu Wang
Asymptotic behavior of Type III mean curvature flow on noncompact hypersurfaces
- DOI:
https://dx.doi.org/10.4310/CAG.2018.v26.n5.a3 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Liang Cheng;Natasa Sesum - 通讯作者:
Natasa Sesum
Asymptotic behavior of Type III mean curvature flow on noncompact hypersurfaces
非紧超曲面上III型平均曲率流的渐近行为
- DOI:
10.4310/cag.2018.v26.n5.a3 - 发表时间:
2014-03 - 期刊:
- 影响因子:0.7
- 作者:
Liang Cheng;Natasa Sesum - 通讯作者:
Natasa Sesum
Convergence of Kähler-Einstein orbifolds
- DOI:
10.1007/bf02921871 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Natasa Sesum - 通讯作者:
Natasa Sesum
Natasa Sesum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasa Sesum', 18)}}的其他基金
Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
- 批准号:
2401549 - 财政年份:2024
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
Conference: Geometric flows and applications
会议:几何流及应用
- 批准号:
2316597 - 财政年份:2023
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
- 批准号:
2105508 - 财政年份:2021
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
Ancient Solutions and Singularity Analysis in Geometric Flows
几何流中的古代解和奇异性分析
- 批准号:
1811833 - 财政年份:2018
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
CAREER:Singularities and singularity models in curvature flows
职业:曲率流中的奇点和奇点模型
- 批准号:
1056387 - 财政年份:2011
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
Different curvature flows and their long time behaviour
不同曲率流及其长期行为
- 批准号:
0905749 - 财政年份:2009
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
相似国自然基金
离散分析-分形和图上的分析及其应用
- 批准号:11271011
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
共形几何与液晶问题中的偏微分方程
- 批准号:11201223
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 11.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Flows of metrics induced from mean curvature flow
由平均曲率流导出的度量流
- 批准号:
539438-2019 - 财政年份:2019
- 资助金额:
$ 11.63万 - 项目类别:
University Undergraduate Student Research Awards
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
- 批准号:
1906500 - 财政年份:2019
- 资助金额:
$ 11.63万 - 项目类别:
Continuing Grant
Impact of Curvature-Induced Secondary Flows on Mechanotransduction and Cell Biochemical Signaling in 3D Bioprinted Artery Models with Physiological Inflow
曲率诱导的二次流对具有生理流入的 3D 生物打印动脉模型中的机械转导和细胞生化信号传导的影响
- 批准号:
1854415 - 财政年份:2019
- 资助金额:
$ 11.63万 - 项目类别:
Standard Grant
Study of fundamental properties of deformed Hermitian Yang-Mills connections and line bundle mean curvature flows
变形埃尔米特杨-米尔斯连接和线束平均曲率流的基本性质研究
- 批准号:
18K13415 - 财政年份:2018
- 资助金额:
$ 11.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research of submanifolds in symmetric spaces and their time evolution along various curvature flows
对称空间子流形及其沿不同曲率流的时间演化研究
- 批准号:
18K03311 - 财政年份:2018
- 资助金额:
$ 11.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quermassintegral preserving local curvature flows
保持局部曲率流的横向质量积分
- 批准号:
400729345 - 财政年份:2018
- 资助金额:
$ 11.63万 - 项目类别:
Research Fellowships
Curvature flows without singularities
无奇点的曲率流动
- 批准号:
336454636 - 财政年份:2017
- 资助金额:
$ 11.63万 - 项目类别:
Priority Programmes
curvature flows and geometric inequalities
曲率流和几何不等式
- 批准号:
498246-2016 - 财政年份:2016
- 资助金额:
$ 11.63万 - 项目类别:
University Undergraduate Student Research Awards
Harnack inequalities for curvature flows and applications
曲率流的哈纳克不等式及其应用
- 批准号:
319506420 - 财政年份:2016
- 资助金额:
$ 11.63万 - 项目类别:
Research Grants














{{item.name}}会员




