Conference: Geometric flows and applications
会议:几何流及应用
基本信息
- 批准号:2316597
- 负责人:
- 金额:$ 1.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award will support US participants attending the conference 'Geometric Flows and Applications', which will take place on July 10-14th at ICMS, Bayes Center in Edinburgh, UK. The event will bring together researchers in geometry and topology whose research interests are closely aligned to topics where geometric flows either already or are expected to play a key role, and will include experts in the analysis of geometric flows. Specific topics will include aspects of complex geometry, Hermitian geometry, symplectic and contact topology, special holonomy, calibrated geometry and gauge theory, as well as Riemannian geometry and low-dimensional topology. A major goal of this conference is to support, train and encourage the next generation of mathematicians in the fields of analysis, complex geometry and mathematical physics. The distinguished and well-known speakers will draw in junior participants from all over the US. By inviting promising junior people to attend, some contributing talks, this conference will help to nurture and support the future leaders of the field. New collaborations and research papers are expected to emerge from this meeting. The theme of this conference is the study of geometric flows and their applications to diverse topics in geometry and topology. Geometric flows are powerful tools for tackling important problems across diverse areas in geometry and topology, and beyond. Spectacular successes go back at least to Donaldson’s work on the Hitchin–Kobayashi correspondence, and continue to the present, with the proofs of the Poincar\'e and Geometrization Conjectures, the Differentiable Sphere Theorem, and the Generalized Smale Conjecture. There are still many key open problems of fundamental importance in a range of areas for which geometric flows provide a natural approach, and for which other methods have proved unsuccessful thus far. Geometric flows are nonlinear, parabolic evolution equations for key geometric quantities, which lie at the heart of a rich and developing theory combining the study of partial differential equations and differential geometry. The most well-known examples of these flows are the Ricci flow and the mean curvature flow, both of which have significant applications, particularly to topology. By using additional data on the manifold (for example, a complex structure), one can define geometric flows which now can now be used to study these more refined geometries. This has proved extremely fruitful, for example in applications (both potential and realised) to gauge theory, the study of the minimal model programme and related problems in complex and algebraic geometry, symplectic topology, Mirror Symmetry and exceptional holonomy. The website for the conference is: https://www.icms.org.uk/workshops/2023/geometric-flows-and-applicationsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持参加将于7月10日至14日在英国爱丁堡贝叶斯中心ICMS举行的几何流和应用会议的美国参与者。这次活动将汇集几何和拓扑学的研究人员,他们的研究兴趣与几何流动已经或预计将发挥关键作用的主题密切一致,并将包括几何流动分析方面的专家。具体主题包括复几何、厄米几何、辛拓扑和接触拓扑学、特殊完整学、校准几何学和规范理论,以及黎曼几何和低维拓扑学。这次会议的一个主要目标是支持、培养和鼓励分析、复杂几何和数学物理领域的下一代数学家。杰出和知名的演讲者将吸引来自美国各地的初级参与者。通过邀请有前途的年轻人参加,一些有贡献的演讲,这次会议将有助于培养和支持该领域未来的领导者。预计这次会议将产生新的合作和研究论文。这次会议的主题是研究几何流及其在几何和拓扑学中的不同主题的应用。几何流是解决几何学和拓扑学等不同领域的重要问题的强大工具。壮观的成功至少可以追溯到Donaldson关于Hitchin-Kobayashi对应的工作,并继续到现在,证明了Poincar猜想和几何化猜想、可微球定理和广义斯梅尔猜想。在几何流提供了一种自然方法的一系列领域中,仍然有许多具有根本重要性的关键开放问题,而其他方法迄今被证明不成功。几何流是关于关键几何量的非线性抛物线演化方程,它是一个丰富和发展的理论的核心,该理论结合了偏微分方程组和微分几何的研究。这些流最著名的例子是Ricci流和平均曲率流,它们都有重要的应用,特别是在拓扑学中。通过使用流形上的附加数据(例如,复杂结构),现在可以定义几何流,这些几何流现在可以用于研究这些更精细的几何。这已被证明是非常有成效的,例如在规范理论、研究复杂和代数几何、辛拓扑、镜像对称和例外完整中的最小模型程序和相关问题的应用(无论是潜在的还是已实现的)。会议的网站是:https://www.icms.org.uk/workshops/2023/geometric-flows-and-applicationsThis奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasa Sesum其他文献
Evolution of locally convex closed curves in the area-preserving and length-preserving curvature flows.
面积保持和长度保持曲率流中局部凸闭合曲线的演化。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.7
- 作者:
Natasa Sesum;Dong-Ho Tsai;Xiao-Liu Wang - 通讯作者:
Xiao-Liu Wang
Asymptotic behavior of Type III mean curvature flow on noncompact hypersurfaces
- DOI:
https://dx.doi.org/10.4310/CAG.2018.v26.n5.a3 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Liang Cheng;Natasa Sesum - 通讯作者:
Natasa Sesum
Asymptotic behavior of Type III mean curvature flow on noncompact hypersurfaces
非紧超曲面上III型平均曲率流的渐近行为
- DOI:
10.4310/cag.2018.v26.n5.a3 - 发表时间:
2014-03 - 期刊:
- 影响因子:0.7
- 作者:
Liang Cheng;Natasa Sesum - 通讯作者:
Natasa Sesum
Convergence of Kähler-Einstein orbifolds
- DOI:
10.1007/bf02921871 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Natasa Sesum - 通讯作者:
Natasa Sesum
Natasa Sesum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasa Sesum', 18)}}的其他基金
Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
- 批准号:
2401549 - 财政年份:2024
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
- 批准号:
2105508 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Ancient Solutions and Singularity Analysis in Geometric Flows
几何流中的古代解和奇异性分析
- 批准号:
1811833 - 财政年份:2018
- 资助金额:
$ 1.1万 - 项目类别:
Continuing Grant
CAREER:Singularities and singularity models in curvature flows
职业:曲率流中的奇点和奇点模型
- 批准号:
1056387 - 财政年份:2011
- 资助金额:
$ 1.1万 - 项目类别:
Continuing Grant
Different curvature flows and their long time behaviour
不同曲率流及其长期行为
- 批准号:
1110145 - 财政年份:2010
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Different curvature flows and their long time behaviour
不同曲率流及其长期行为
- 批准号:
0905749 - 财政年份:2009
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
- 批准号:
RGPIN-2019-04554 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
- 批准号:
RGPIN-2019-04554 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
- 批准号:
21H00990 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
- 批准号:
2103573 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Continuing Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
- 批准号:
2105508 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant