Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
基本信息
- 批准号:1115682
- 负责人:
- 金额:$ 11.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is aimed at developing highly accurate, efficient and robust numerical methods for systems of nonlinear time-dependent PDEs, with particular reference to multidimensional hyperbolic systems of conservation/balance laws and related problems. The principal part of the proposed research will be focused on the development of new finite-volume methods that will provide an improved resolution of linear contact waves and incorporate new techniques for solving problems involving complicated nonlinear wave phenomena and blowing up/spiky solutions. The proposed methods will be applied to a variety of nonlinear problems, among which are systems of gas dynamics, nonlinear elasticity and acoustics systems, modern traffic flow models, several chemotaxis and bioconvection models, and others. These problems will be studied in the most challenging cases of high space dimensions, complex geometries and moving interfaces. For each problem, a high-resolution finite-volume scheme will be systematically derived in a way that the main properties satisfied by the underlying system of PDEs will be also satisfied on the discrete level. One of the key features of the new schemes will be their nonlinear stability, which will be ensured by ability of the scheme to preserve positivity of such physical quantities as density. To achieve this goal, several high-order positivity preserving techniques will be explored.Besides providing the examples that corroborate the analytical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science including geophysics, meteorology, astrophysics, semiconductors, traffic flows, image processing, financial and biological modeling and many other areas. Development of modern high-resolution finite-volume methods as well as of supplementary techniques is essential for solving many practically important problems, some of which are currently out of reach because the existing numerical methods are either inefficient/inaccurate or not applicable at all.
该项目的目的是开发高精度、高效率和稳健的数值方法,用于非线性时变偏微分方程组,特别是关于守恒定律/平衡律的多维双曲型方程组和相关问题。拟议研究的主要部分将集中在开发新的有限体积方法,这些方法将提供更高的线性接触波的分辨率,并结合新的技术来解决涉及复杂非线性波现象的问题和爆炸/尖峰解。所提出的方法将应用于各种非线性问题,其中包括气体动力学系统、非线性弹性系统和声学系统、现代交通流模型、几种趋化性和生物对流模型等。这些问题将在最具挑战性的情况下进行研究,这些情况包括高空间维度、复杂的几何形状和移动的界面。对于每个问题,系统地推导出高分辨率的有限体积格式,使得基本偏微分方程组所满足的主要性质也将在离散水平上得到满足。新格式的关键特征之一是其非线性稳定性,这将通过该格式保持密度等物理量的正性来确保。为了实现这一目标,将探索几种高阶正性保持技术。除了提供证实分析方法的例子外,上述应用对于当今科学中出现的广泛类别的问题具有实质性的独立价值,包括地球物理、气象学、天体物理、半导体、交通流量、图像处理、金融和生物建模以及许多其他领域。现代高分辨率有限体积方法及其辅助技术的发展对于解决许多重要的实际问题是必不可少的,其中一些问题目前是无法解决的,因为现有的数值方法要么效率低下/不准确,要么根本不适用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina Chertock其他文献
A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
- DOI:
10.1016/bs.hna.2016.11.004 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock - 通讯作者:
Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock;Jian‐Guo Liu;Terrance Pendleton - 通讯作者:
Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
- DOI:
10.1007/s10915-019-00947-w - 发表时间:
2019-04 - 期刊:
- 影响因子:2.5
- 作者:
Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock - 通讯作者:
Alina Chertock
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
- DOI:
10.1007/s10915-008-9242-4 - 发表时间:
2008 - 期刊:
- 影响因子:2.5
- 作者:
Alina Chertock;D. Gottlieb;A. Solomonoff - 通讯作者:
A. Solomonoff
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
- DOI:
10.1016/j.jcp.2017.01.030 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock;P. Degond;J. Neusser - 通讯作者:
J. Neusser
Alina Chertock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina Chertock', 18)}}的其他基金
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
- 批准号:
1818684 - 财政年份:2018
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
- 批准号:
1521051 - 财政年份:2015
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
- 批准号:
1216974 - 财政年份:2012
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
- 批准号:
0712898 - 财政年份:2007
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
- 批准号:
0410023 - 财政年份:2004
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331437 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337028 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337027 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331438 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
- 批准号:
2405548 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
- 批准号:
2420945 - 财政年份:2024
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
- 批准号:
2314254 - 财政年份:2023
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311878 - 财政年份:2023
- 资助金额:
$ 11.84万 - 项目类别:
Standard Grant