Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
基本信息
- 批准号:1521051
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will contribute significantly toward development of computational methods for shallow water and related models. Special attention will be paid to applications arising in oceanography, in atmospheric sciences, and in hydraulic, coastal, civil, and enhanced oil recovery engineering, in which rapid changes in the bottom topography, Coriolis forces, friction, nonconservative terms, and uncertain phenomena have to be taken into account. The problems under study include rainwater drainage and flooding in urban areas, shallow water models of turbidity currents, multilayer flows, and shallow water models with uncertain data. The new tools under development promise to have great potential in designing coastal protection systems and investigating the effects of sediment transport on shelf drilling platforms as well as contributing toward the development of flood mitigation systems and planning of new urban areas. The project is aimed at developing accurate, efficient, and robust numerical methods for shallow water equations and related models, with particular reference to problems that admit nonsmooth (discontinuous) solutions and involve complicated nonlinear waves, moving interfaces, and uncertain data. Shallow water models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. Naturally these models, especially in the cases of high space dimensions, require development and implementation of special numerical techniques such as numerical balancing between the terms that are balanced in the original system of PDEs (development of well-balanced schemes), ensuring positivity of all fluid layers (this is absolutely necessary for both accurate description of dry and near dry states and enforcement of nonlinear stability), operator splitting methods, interface tracking approaches, and others that will be in the focus of the research project. The development of new techniques will be based on high-order shock-capturing finite-volume schemes, accurate and efficient ODE solvers, and stochastic Galerkin methods, utilizing major advantages of each one of these methods in the context of the problems under study.
该研究项目将为浅水和相关模型的计算方法的发展做出重大贡献。将特别注意海洋学,大气科学,以及在水力,沿海,民用和提高石油采收率工程,其中在底部地形,科里奥利力,摩擦,非保守条款和不确定现象的快速变化所产生的应用程序必须考虑在内。正在研究的问题包括城市地区的雨水排水和洪水,浊流的浅水模型,多层流动,以及具有不确定数据的浅水模型。正在开发的新工具有望在设计海岸保护系统和调查沉积物输运对大陆架钻井平台的影响方面具有巨大潜力,并有助于开发防洪系统和规划新的城市地区。该项目旨在为浅水方程和相关模型开发准确,高效和鲁棒的数值方法,特别是涉及非光滑(不连续)解和涉及复杂非线性波,移动界面和不确定数据的问题。浅水模式是一组时间相关的偏微分方程(PDE),这些偏微分方程是利用诸如质量和动量守恒、流体静力学或正压近似等物理性质推导出来的。自然地,这些模型,特别是在高空间维度的情况下,需要开发和实施特殊的数值技术,例如在原始偏微分方程系统中平衡的项之间的数值平衡(制定平衡方案),确保所有流体层的正性(这对于精确描述干态和近干态以及增强非线性稳定性是绝对必要的),算子分裂方法,接口跟踪方法,以及其他将成为研究项目重点的方法。新技术的发展将基于高阶激波捕获有限体积格式、精确高效的常微分方程求解器和随机伽辽金方法,并在研究问题的背景下利用这些方法中每一种方法的主要优点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina Chertock其他文献
A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
- DOI:
10.1016/bs.hna.2016.11.004 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock - 通讯作者:
Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock;Jian‐Guo Liu;Terrance Pendleton - 通讯作者:
Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
- DOI:
10.1007/s10915-019-00947-w - 发表时间:
2019-04 - 期刊:
- 影响因子:2.5
- 作者:
Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock - 通讯作者:
Alina Chertock
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
- DOI:
10.1007/s10915-008-9242-4 - 发表时间:
2008 - 期刊:
- 影响因子:2.5
- 作者:
Alina Chertock;D. Gottlieb;A. Solomonoff - 通讯作者:
A. Solomonoff
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
- DOI:
10.1016/j.jcp.2017.01.030 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alina Chertock;P. Degond;J. Neusser - 通讯作者:
J. Neusser
Alina Chertock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina Chertock', 18)}}的其他基金
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
- 批准号:
1818684 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
- 批准号:
1216974 - 财政年份:2012
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
- 批准号:
1115682 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
- 批准号:
0712898 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
- 批准号:
0410023 - 财政年份:2004
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant