AF: Small: The Boundary of Learnability for Monotone Boolean Functions
AF:小:单调布尔函数的可学习性边界
基本信息
- 批准号:1115703
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning is a dynamic and rapidly growing research area that plays an important role in many applications over a diverse range of areas including scientific discovery, search technology, finance, natural language, and more. An important goal in machine learning theory is to understand which types of binary classification rules (i.e. Boolean functions) can be efficiently learned from labeled data, and which cannot. This proposal describes a detailed program of theoretical research on understanding the learnability of different types of monotone Boolean functions from uniform random examples. Monotone functions are highly natural from a learning point of view; they are also a central class of functions in computational complexity theory and the analysis of Boolean functions, and the study of their learnability has close connections to these areas.Recent years have seen exciting advances both on efficient algorithms and on hardness results for learning monotone functions. The PI believes that building on this progress, a fine-grained understanding of the boundary between learnable and unlearnable classes of monotone functions may be within reach. More precisely, the PI will work to show that monotone DNF formulas (depth-2 circuits) are efficiently learnable, while monotone depth-3 circuits are not. Establishing this would be a landmark in our understanding of the learnability of this important class of Boolean functions.On the positive side the PI will work on a range of intermediate problems, leading up to the goal of obtaining a poly(n)-time algorithm for learning arbitrary poly(n)-term monotone DNF formulas:* Learning Monotone Decision Trees Better. The PI will analyze a widely used machine learning heuristic for decision tree induction and work to show that it is in fact an efficient algorithm for learning poly(n)-size monotone decision trees.* Learning Monotone CDNF. Using results and techniques from discrete Fourier analysis of Boolean functions, the PI will work to obtain a polynomial time algorithm for monotone Boolean functions whose CNF (Conjunctive Normal Form) size and DNF (Disjunctive Normal Form) size are both polynomial in n (a broader class than poly(n)-size monotone decision trees).* Learning Monotone DNF Formulas. The PI has developed an algorithm for learning monotone DNF formulas with a subpolynomial number of terms; using different techniques he has also given a poly(n)-time algorithm that can learn random poly(n)-size monotone DNF formulas. The PI will work to unify these two approaches to obtain a single, more powerful, algorithm for learning monotone DNF.* Other approaches. The PI will study other approaches that may be useful for monotone function learning problems: 1) analyzing the distribution of "Fourier weight" in monotone functions; 2) applying specialized boosting algorithms to learn monotone functions; and 3) using conjectures in Fourier analysis of Boolean functions as tools toward learning results.Building on his recent work, the PI will also work to establish two types of negative results for learning monotone functions: cryptographic hardness results, and lower bounds for Strong Statistical Query learning. The goal in both cases is to show that learning depth-3 monotone circuits is hard; techniques for monotone hardness amplification in complexity theory are expected to play a role in both of these directions.
Machine learning is a dynamic and rapidly growing research area that plays an important role in many applications over a diverse range of areas including scientific discovery, search technology, finance, natural language, and more. An important goal in machine learning theory is to understand which types of binary classification rules (i.e. Boolean functions) can be efficiently learned from labeled data, and which cannot. This proposal describes a detailed program of theoretical research on understanding the learnability of different types of monotone Boolean functions from uniform random examples. Monotone functions are highly natural from a learning point of view; they are also a central class of functions in computational complexity theory and the analysis of Boolean functions, and the study of their learnability has close connections to these areas.Recent years have seen exciting advances both on efficient algorithms and on hardness results for learning monotone functions. The PI believes that building on this progress, a fine-grained understanding of the boundary between learnable and unlearnable classes of monotone functions may be within reach. More precisely, the PI will work to show that monotone DNF formulas (depth-2 circuits) are efficiently learnable, while monotone depth-3 circuits are not. Establishing this would be a landmark in our understanding of the learnability of this important class of Boolean functions.On the positive side the PI will work on a range of intermediate problems, leading up to the goal of obtaining a poly(n)-time algorithm for learning arbitrary poly(n)-term monotone DNF formulas:* Learning Monotone Decision Trees Better. The PI will analyze a widely used machine learning heuristic for decision tree induction and work to show that it is in fact an efficient algorithm for learning poly(n)-size monotone decision trees.* Learning Monotone CDNF. Using results and techniques from discrete Fourier analysis of Boolean functions, the PI will work to obtain a polynomial time algorithm for monotone Boolean functions whose CNF (Conjunctive Normal Form) size and DNF (Disjunctive Normal Form) size are both polynomial in n (a broader class than poly(n)-size monotone decision trees).* Learning Monotone DNF Formulas. The PI has developed an algorithm for learning monotone DNF formulas with a subpolynomial number of terms; using different techniques he has also given a poly(n)-time algorithm that can learn random poly(n)-size monotone DNF formulas. The PI will work to unify these two approaches to obtain a single, more powerful, algorithm for learning monotone DNF.* Other approaches. The PI will study other approaches that may be useful for monotone function learning problems: 1) analyzing the distribution of "Fourier weight" in monotone functions; 2) applying specialized boosting algorithms to learn monotone functions; and 3) using conjectures in Fourier analysis of Boolean functions as tools toward learning results.Building on his recent work, the PI will also work to establish two types of negative results for learning monotone functions: cryptographic hardness results, and lower bounds for Strong Statistical Query learning. The goal in both cases is to show that learning depth-3 monotone circuits is hard; techniques for monotone hardness amplification in complexity theory are expected to play a role in both of these directions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rocco Servedio其他文献
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Rocco Servedio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rocco Servedio', 18)}}的其他基金
Collaborative Research: AF: Medium: Continuous Concrete Complexity
合作研究:AF:中:连续混凝土复杂性
- 批准号:
2211238 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
AF: Medium: The Trace Reconstruction Problem
AF:中:迹线重建问题
- 批准号:
2106429 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
NSF QCIS-FF: Columbia University Computer Science Department Proposal
NSF QCIS-FF:哥伦比亚大学计算机科学系提案
- 批准号:
1926524 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Student Travel Grant for 2019 Conference on Computational Complexity (CCC)
2019 年计算复杂性会议 (CCC) 学生旅费补助
- 批准号:
1919026 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
BIGDATA: F: Big Data Analysis via Non-Standard Property Testing
BIGDATA:F:通过非标准属性测试进行大数据分析
- 批准号:
1838154 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Boolean Function Analysis Meets Stochastic Design
AF:小型:协作研究:布尔函数分析与随机设计的结合
- 批准号:
1814873 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Student Travel Support for CCC 2018
CCC 2018 学生旅行支持
- 批准号:
1822097 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Circuit Lower Bounds via Projections
AF:中:协作研究:通过投影确定电路下界
- 批准号:
1563155 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
AF: Small: Linear and Polynomial Threshold Functions: Structural Analysis and Algorithmic Applications
AF:小:线性和多项式阈值函数:结构分析和算法应用
- 批准号:
1420349 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Common Variability in the Stable Atmospheric Boundary Layer on Small Space and Time Scales
小时空尺度上稳定大气边界层的常见变化
- 批准号:
1945587 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Geomagnetic anomaly analysis around the axis of the divergent plate boundary at Afar Depression in Ethiopia by using unmanned small airplane
利用小型无人飞机对埃塞俄比亚阿法尔洼地辐散板块边界轴周围的地磁异常进行分析
- 批准号:
17H01665 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on the dayside boundary layer of a small-scale magnetosphere by full-particle model computer experiments
小尺度磁层向阳边界层的全粒子模型计算机实验研究
- 批准号:
16H04058 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluation of the facts of flooding in the small boundary paddy fields in the beginning of the Yayoi period by X-ray CT and Activation Analysis
利用X射线CT和活化分析评价弥生时代初期小边界水田的水淹事实
- 批准号:
15K12945 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
CSR: Small: I/O Virtualization at the Device File Boundary and its Applications
CSR:小:设备文件边界的 I/O 虚拟化及其应用
- 批准号:
1422312 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Structures of very-small-scale motions in transitional and turbulent boundary layers
过渡和湍流边界层中极小尺度运动的结构
- 批准号:
465381-2014 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards
CHS: Small: Intra-Organizational Boundary Spanning: Strategic Implications for the Design, Implementation, and Use of Enterprise Social Media
CHS:小型:组织内边界跨越:对企业社交媒体的设计、实施和使用的战略影响
- 批准号:
1422316 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Delay Signatures: Blurring the Boundary between the Network and the Processor
SHF:小型:协作研究:延迟签名:模糊网络和处理器之间的界限
- 批准号:
1318571 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
AGS-PRF: Extreme Near-Surface Wind Speeds Associated with Coherent Small-Scale Vortices within the Boundary Layer of Tropical Cyclones
AGS-PRF:与热带气旋边界层内相干小规模涡旋相关的极端近地表风速
- 批准号:
1231193 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Fellowship Award
SHF: Small: Collaborative Research: Delay Signatures: Blurring the Boundary between the Network and the Processor
SHF:小型:协作研究:延迟签名:模糊网络和处理器之间的界限
- 批准号:
1318072 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant