Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
基本信息
- 批准号:RGPIN-2015-04179
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tiny systems that can be as small as 1/1000th the diameter of a human hair continue to bring tremendous revolutionary changes in our everyday lives. In this program, we are particularly interested in an important class of such systems known as low dimensional nanostructures (LDNs). They can be self-assembled and their extraordinary properties can be engineered to a specific application at hand. As a result, their potential is virtually unlimited. Since many effects, that were negligible at larger scales, cannot be ignored any longer for LDNs, the mathematical modelling is decisively becoming a major tool in their studies.****The proposed research program is aimed at further advancement in the development and applications of multiscale mathematical models for the analysis of LDNs and other systems of interest, and expanding it to a new state-of-the-art mathematical and computational framework for analyzing such systems. Specifically, the main goal is to account systematically for geometric phases and time-dependent coupling effects by developing mathematically coherent approaches to the study of the systems where such effects are essential. Since its first appearance in quantum systems, the elegantly simple mathematical concept of geometric phase has also been successfully applied to a wide range of classical and hybrid quantum-continuum systems. Nevertheless, many mathematical challenges in this field are still on only scarcely explored horizons.***The program will capitalize on the developed expertise and advances already made by the PI's group. Application-wise, major focus will be given to LDNs and to several classes of biosystems at the molecular and nanoscale levels, in particular Ribonucleic acid nanostructures and photosynthetic complexes, as well as to hybrid quantum-continuum systems.****The program will, firstly, allow a systematic study of properties of such systems where geometric phases and time-dependent couplings are essential. Although such systems are pervasive in natural and man-made environments, their systematic studies for several important classes of problems are currently absent. Secondly, it will provide a better understanding of the connection between the geometric-phase-induced forces and important dynamic phenomena in a field of great fundamental and technological interest. Thirdly, given their ubiquitous nature, it is expected that the models and tools developed in this proposal will assist in addressing other challenging problems of mathematics and its applications. Indeed, methods and tools to be developed within this program are expected to be indispensable for a quite general class of problems where the influence of geometric phases and dynamic coupling effects on the properties of the systems is significant. The results may not be restricted to just the nanostructures and can be useful in studying other important systems in science and engineering.**
微小的系统可以小到人类头发直径的千分之一,继续为我们的日常生活带来巨大的革命性变化。 在这个计划中,我们特别感兴趣的一类重要的系统称为低维纳米结构(LDN)。它们可以自组装,其非凡的特性可以被设计成手头的特定应用。因此,它们的潜力几乎是无限的。由于许多在较大尺度上可以忽略不计的影响,对于LDN来说再也不能忽略了,因此数学建模决定性地成为他们研究的主要工具。拟议的研究计划旨在进一步推进多尺度数学模型的开发和应用,以分析LDN和其他感兴趣的系统,并将其扩展到一个新的最先进的数学和计算框架,用于分析此类系统。 具体而言,主要目标是系统地考虑几何相位和时间依赖性耦合效应,通过发展数学上连贯的方法来研究这些效应至关重要的系统。自从它第一次出现在量子系统中以来,几何相位的优雅简单的数学概念也被成功地应用于广泛的经典和混合量子连续系统。尽管如此,这一领域的许多数学挑战仍然只是很少探索的视野。该计划将利用PI小组已经取得的专业知识和进步。应用方面,主要关注LDN和分子和纳米级的几类生物系统,特别是核糖核酸纳米结构和光合复合物,以及混合量子连续系统。该计划将,首先,允许这样的系统的几何相位和时间相关的耦合是必不可少的属性的系统研究。 虽然这样的系统是普遍存在于自然和人为环境中,他们的系统研究的几个重要类别的问题目前还没有。其次,它将提供一个更好的理解之间的连接的几何相位诱导力和重要的动力学现象,在一个领域的巨大的基础和技术利益。 第三,鉴于其普遍存在的性质,预计本提案中开发的模型和工具将有助于解决数学及其应用的其他挑战性问题。 事实上,该计划中开发的方法和工具预计对于一类相当普遍的问题来说是不可或缺的,在这些问题中,几何相和动态耦合效应对系统特性的影响很大。这些结果可能不仅限于纳米结构,而且可以用于研究科学和工程中的其他重要系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melnik, Roderick其他文献
A dynamic hysteresis model based on Landau phenomenological theory of fatigue phenomenon in ferroelectrics
- DOI:
10.1016/j.mtcomm.2020.101479 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:3.8
- 作者:
He, Xuan;Du, Haoyuan;Melnik, Roderick - 通讯作者:
Melnik, Roderick
Higher-order nonlinear electromechanical effects in wurtzite GaN/AlN quantum dots
- DOI:
10.1088/0953-8984/22/49/495301 - 发表时间:
2010-12-15 - 期刊:
- 影响因子:2.7
- 作者:
Bahrami-Samani, Mehrdad;Patil, Sunil R.;Melnik, Roderick - 通讯作者:
Melnik, Roderick
First-principle studies of Ca-X (X=Si,Ge,Sn,Pb) intermetallic compounds
Ca-X (X=Si,Ge,Sn,Pb)金属间化合物的第一性原理研究
- DOI:
10.1016/j.jssc.2009.11.007 - 发表时间:
2010 - 期刊:
- 影响因子:3.3
- 作者:
Wen, Bin;Li, Tingju;Yao, Shan;Shi, Dongmin;Melnik, Roderick;Yang, Zhiwen - 通讯作者:
Yang, Zhiwen
Influence of Mg2+, SO42- and Na+ ions of sea water in crude oil recovery: DFT and ab initio molecular dynamics simulations
- DOI:
10.1016/j.colsurfa.2017.12.009 - 发表时间:
2018-02-20 - 期刊:
- 影响因子:5.2
- 作者:
Prabhakar, Sanjay;Melnik, Roderick - 通讯作者:
Melnik, Roderick
Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments
- DOI:
10.1080/08927022.2020.1804564 - 发表时间:
2020-09-21 - 期刊:
- 影响因子:2.1
- 作者:
Badu, Shyam;Melnik, Roderick;Singh, Sundeep - 通讯作者:
Singh, Sundeep
Melnik, Roderick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melnik, Roderick', 18)}}的其他基金
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Coupled Mathematical Models for Environmentally-friendly Multiscale Materials Systems
环境友好型多尺度材料系统耦合数学模型理论与应用
- 批准号:
RGPIN-2020-06958 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computing Facilities and Visualization in Mathematical Modelling for Multiscale Systems
多尺度系统数学建模中的计算设施和可视化
- 批准号:
RTI-2020-00535 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Research Tools and Instruments
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
- 批准号:
RGPIN-2015-04179 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of KRAS plasma membrane targeting by defined glycosphingolipids.
通过特定的鞘糖脂调节 KRAS 质膜靶向。
- 批准号:
10718459 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
- 批准号:
10567076 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
- 批准号:
10616188 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Health Effects of the Fluorinated Pollutants; PFAS on Enamel Development
氟化污染物对健康的影响;
- 批准号:
10697298 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Blending Dentin to Dentin: Biometric Hydrogels for Dentin Tissue Engineering
将牙本质与牙本质混合:用于牙本质组织工程的生物识别水凝胶
- 批准号:
10795693 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Administrative Supplement (Diversity) to Generating functional diversity from molecular homogeneity at glutamatergic synapses
从谷氨酸能突触的分子同质性生成功能多样性的行政补充(多样性)
- 批准号:
10841899 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Anti-biofilm laser-mediated photothermal ablation via complex noble metal nanostructures
通过复杂的贵金属纳米结构进行抗生物膜激光介导的光热烧蚀
- 批准号:
10625065 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: