AF: SMALL: Developing Novel Computational Methods for Investigating Protein Dynamics Using a Multi-Scale Approach
AF:小:开发利用多尺度方法研究蛋白质动力学的新型计算方法
基本信息
- 批准号:1116060
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are the workhorses of the cell, involved in virtually every process in life. Many proteins are flexible molecules that undergo structural changes as part of their function. In other words ? they can assume various possible structures (conformations) via changes that range from small-scale movements to large domain motions. The question of how the structure and dynamics of proteins relate to their function has challenged scientists for several decades but still remains largely open. Existing computational methods for simulating protein dynamics can sample atomic level dynamic processes, yet their usefulness is limited as they require large computational resources, and they only allow for modeling of interactions that take place on very small time scales (e.g., several hundreds of nanoseconds). There is promise that understanding the connection between protein structure, dynamics and function can contribute a lot to the understanding of how molecular machines function and may aid in drug design and functional analysis. A computational framework for an efficient large-scale exploration of protein conformational changes is proposed in this work. Given a protein structure, the aim is to efficiently generate a diverse set of conformations representing the low energy landscape of this protein under physiological conditions. The suggested methodology can be used to explore the conformational space of proteins and protein complexes and gain better understanding of protein dynamics and function. To overcome the computational demands of a full scale conformational search, the search will be done in two stages: first, conduct a fast and approximate geometry-based exploration of the low energy landscape of proteins and protein complexes in an efficient way, temporarily sacrificing small-scale details for efficiency. The approximate search is enhanced with a novel biasing scheme that drives the search towards more flexible regions of the protein, reducing the huge search space into a manageable size. The reduced representation of the conformational landscape will be enhanced and complemented with detailed, physics based simulations applied to interesting and important regions in the proteins or to intermediate structures. This last stage will take advantage of massive parallel computing. The combination of fast, approximate search techniques and detailed physics-based simulation methods will create an enhanced, more complete picture of the low-energy landscape of those proteins and will improve understanding about how proteins perform their function. The methodology can be applied to problems related to protein interactions and rational drug design.The broader impact of this project is partly due to the central role of proteins in virtually every basic biological function. This project addresses a significant question of the biological research community. Educational and outreach activities will be implemented through the following: a) Interdisciplinary collaborations with members of the CS department and other departments in the College of Science and Mathematics at UMass Boston. b) Training and mentoring the research of undergraduate and graduate students, including women and students from under-represented groups in science. c) Help setting up a Bioinformatics research and teaching program at UMass Boston.
蛋白质是细胞的主要组成部分,几乎参与了生命中的每一个过程。许多蛋白质是柔性分子,其结构变化是其功能的一部分。换句话说?它们可以通过从小规模运动到大畴运动的变化呈现各种可能的结构(构象)。蛋白质的结构和动力学如何与其功能相关的问题已经挑战了科学家几十年,但在很大程度上仍然是开放的。用于模拟蛋白质动力学的现有计算方法可以对原子水平的动态过程进行采样,但是它们的有用性是有限的,因为它们需要大量的计算资源,并且它们仅允许对在非常小的时间尺度上发生的相互作用进行建模(例如,几百纳秒)。有希望了解蛋白质结构,动力学和功能之间的联系可以有助于了解分子机器如何发挥作用,并可能有助于药物设计和功能分析。本文提出了一个有效的大规模探索蛋白质构象变化的计算框架。给定蛋白质结构,目的是有效地产生代表该蛋白质在生理条件下的低能量景观的一组不同的构象。该方法可用于探索蛋白质和蛋白质复合物的构象空间,并更好地了解蛋白质动力学和功能。为了克服全尺度构象搜索的计算需求,搜索将分两个阶段进行:首先,以有效的方式对蛋白质和蛋白质复合物的低能景观进行快速和近似的基于几何的探索,暂时牺牲小尺度细节以提高效率。近似搜索通过一种新的偏置方案得到增强,该方案将搜索推向蛋白质的更灵活区域,将巨大的搜索空间减少到可管理的大小。构象景观的简化表示将通过应用于蛋白质或中间结构中有趣和重要区域的详细的基于物理的模拟来增强和补充。最后一个阶段将利用大规模并行计算。快速、近似的搜索技术和详细的基于物理的模拟方法相结合,将为这些蛋白质的低能景观创造一个更好、更完整的画面,并将提高对蛋白质如何发挥其功能的理解。该方法可应用于蛋白质相互作用和合理药物设计相关的问题。该项目的广泛影响部分是由于蛋白质在几乎所有基本生物功能中的核心作用。该项目解决了生物研究界的一个重要问题。教育和推广活动将通过以下方式实施:a)与马萨诸塞大学波士顿分校科学与数学学院CS系和其他系的成员进行跨学科合作。B)培训和指导本科生和研究生的研究工作,包括妇女和来自科学界代表性不足群体的学生。c)帮助在麻省大学波士顿分校建立生物信息学研究和教学计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nurit Haspel其他文献
Guiding protein docking with Geometric and Evolutionary Information
用几何和进化信息指导蛋白质对接
- DOI:
10.1142/s0219720012420085 - 发表时间:
2012 - 期刊:
- 影响因子:1
- 作者:
I. Hashmi;Bahar Akbal;Nurit Haspel;Amarda Shehu - 通讯作者:
Amarda Shehu
Refining multimeric protein complexes using conservation, electrostatics and probabilistic selection
利用守恒、静电学和概率选择精炼多聚蛋白复合物
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Bahar Akbal;Nurit Haspel - 通讯作者:
Nurit Haspel
Protein Hormone Fragmentation in Intercellular Signaling: Hormones as Nested Information Systems†.
细胞间信号传导中的蛋白质激素断裂:激素作为嵌套信息系统†。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.6
- 作者:
K. Campbell;Nurit Haspel;Cassandra Gath;Nuzulul Kurniatash;Indira Nouduri Akkiraju;Naomi Stuffers;Umaben S. Vadher - 通讯作者:
Umaben S. Vadher
Accurate prediction of docked protein structure similarity using neural networks and restricted Boltzmann machines
使用神经网络和受限玻尔兹曼机准确预测对接蛋白质结构相似性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Farhoodi;Bahar Akbal;Nurit Haspel - 通讯作者:
Nurit Haspel
Towards a hybrid method for detecting critical protein residues
寻找检测关键蛋白质残基的混合方法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Bahar Akbal;F. Jagodzinski;Nurit Haspel - 通讯作者:
Nurit Haspel
Nurit Haspel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nurit Haspel', 18)}}的其他基金
EAGER: III: Collaborative Research: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:协作研究:评估氨基酸插入和缺失突变影响的计算机算法
- 批准号:
2031260 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
AF: SMALL: Computational Framework for Characterizing Protein Conformational Landscapes
AF:SMALL:表征蛋白质构象景观的计算框架
- 批准号:
1421871 - 财政年份:2014
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Developing a novel therapeutic strategy to overcome multidrug resistance in small-cell lung cancer by activating innate immunity
开发一种新的治疗策略,通过激活先天免疫来克服小细胞肺癌的多药耐药性
- 批准号:
23K07639 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limbo urbanism: developing planning theories and practices from small but rapidly urbanising places in the South West Asian/North African region
《地狱边境城市主义:从西南亚/北非地区小型但快速城市化的地方发展规划理论和实践》
- 批准号:
ES/Y007735/1 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Fellowship
AEON - Development of an innovative, floating, dual-energy platform (60kW) for Small Island Developing States
AEON - 为小岛屿发展中国家开发创新型浮动双能源平台(60kW)
- 批准号:
10041204 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Collaborative R&D
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Developing novel small molecule boosting agents for anti-cancer engineered T cell therapies
开发用于抗癌工程 T 细胞疗法的新型小分子增强剂
- 批准号:
486498 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Studentship Programs
A novel miniaturised atmospheric aerosol satellite instrument: developing a small form factor multi-angle spectropolarimeter
新型小型化大气气溶胶卫星仪器:开发小型多角度分光偏振计
- 批准号:
2780824 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Studentship
Developing corrector small molecules for reactivation of mutant p53 in cancer
开发用于重新激活癌症中突变 p53 的校正小分子
- 批准号:
10512976 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Developing travel behaviour models, and transportation and emissions simulation tools for a small Canadian municipality
为加拿大的一个小城市开发出行行为模型以及交通和排放模拟工具
- 批准号:
567108-2021 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Alliance Grants
Characterizing and developing RNA biosensors to small metabolites
表征和开发小代谢物的 RNA 生物传感器
- 批准号:
573543-2022 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
University Undergraduate Student Research Awards
Analysis of the impacts of environmental fluctuations and commercial catches of small pelagic fishes on a coastal ecosystem for developing sustainable fishery management strategies
分析环境波动和小型中上层鱼类商业捕捞对沿海生态系统的影响,以制定可持续渔业管理战略
- 批准号:
22K05804 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)