RI: Small: Collaborative Research: Statistical Learning of Language Universals

RI:小型:协作研究:语言共性的统计学习

基本信息

  • 批准号:
    1116676
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

As modern technology infrastructure spreads throughout the world, the quantity of electronic text, written in hundreds of different languages, continues to grow in size and diversity. Building effective information retrieval, extraction, and translation systems across this vast array of languages currently requires time-consuming and expensive linguistic annotations for each language. Generic, fully unsupervised, methods are unlikely to provide a language independent solution to this problem.Focusing on part-of-speech prediction, this project undertakes a novel approach, combining elements of supervised and unsupervised learning without assuming any specific knowledge of the target language. Instead of treating individual languages as closed systems, language-independent "universals" are statistically estimated from dozens of languages for which annotated corpora exist, and these learned universals are used to predict the part-of-speech categories of unannotated languages. At the heart of the project is a data-driven exploration of language-independent corpus characteristics that relate cross-lingual linguistic categories to surface statistics of text. These learned patterns are incorporated into expressive structured prediction models using novel approximate learning and inference methods developed by the Principal Investigators of the project.Of the world?s spoken languages, hundreds are at risk of immediate extinction and thousands more are likely to disappear over the coming decades. By facilitating the rapid creation of language-independent linguistic analysis tools, the technology developed under this project has the potential to revolutionize the documentation of endangered languages. In the long-term, this research direction will also help realize the full social benefits of the global technology infrastructure by creating intelligent text processing tools for hundreds of low-resource languages.
随着现代技术基础设施遍布世界各地,以数百种不同语言编写的电子文本的数量在规模和多样性方面继续增长。目前,跨大量语言构建有效的信息检索、提取和翻译系统需要为每种语言进行耗时且昂贵的语言注释。通用的、完全无监督的方法不太可能为这个问题提供独立于语言的解决方案。本项目以词性预测为重点,采用了一种新颖的方法,结合了监督学习和非监督学习的元素,而不需要假设目标语言的任何特定知识。与将单个语言视为封闭系统不同,我们从存在带注释的语料库的数十种语言中统计估计出与语言无关的“共相”,并使用这些学习到的共相来预测未带注释的语言的词性类别。该项目的核心是对与语言无关的语料库特征进行数据驱动的探索,这些特征将跨语言的语言类别与文本的表面统计联系起来。这些学习到的模式被整合到富有表现力的结构化预测模型中,使用由该项目的主要研究人员开发的新颖的近似学习和推理方法。世界的?在美国的口语中,有数百种面临着立即灭绝的危险,还有数千种可能在未来几十年内消失。通过促进独立于语言的语言分析工具的快速创建,在这个项目下开发的技术有可能彻底改变濒危语言的记录。从长远来看,这一研究方向还将通过为数百种低资源语言创建智能文本处理工具,帮助实现全球技术基础设施的全部社会效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Snyder其他文献

A Statistical Model for Lost Language Decipherment
失落语言破译的统计模型
Unsupervised Consonant-Vowel Prediction over Hundreds of Languages
对数百种语言进行无监督辅音-元音预测
Unsupervised multilingual learning
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Snyder
  • 通讯作者:
    Benjamin Snyder
Modeling Child Divergences from Adult Grammar
模拟儿童与成人语法的分歧
Part-of-speech Taggers for Low-resource Languages using CCA Features
使用 CCA 功能的低资源语言的词性标注器
  • DOI:
    10.18653/v1/d15-1150
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Young;Benjamin Snyder;R. Sarikaya
  • 通讯作者:
    R. Sarikaya

Benjamin Snyder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313130
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2334936
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了