SHF: Small: Collaborative Research: Active DNA Assembly of Aperiodic Structures
SHF:小型:合作研究:非周期结构的主动 DNA 组装
基本信息
- 批准号:1117254
- 负责人:
- 金额:$ 14.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AF: Small: Collaborative Research: Active DNA Assembly of Aperiodic StructuresPIs: N.C. Seeman, N. JonoskaThe science of computing and information processing is rapidly proliferating within established disciplines that at first glance appear unrelated. Examples include biochemistry and biology through the areas of bioinformatics and algorithmic molecular assembly, or physics, through quantum computing. Current top-down photolithographic methods of electronic component construction are likely to encounter severe barriers as miniaturization requires features at very small sizes. An alternative approach to such constructions is programmable bottom-up assembly on the molecular scale. The most popular basis for bottom-up assembly is DNA self-assembly, because DNA contains information through which assembly can be controlled in a variety of ways. This approach has been explored by a variety of laboratories in recent years, but was pioneered by the PI Seeman's laboratory roughly thirty years ago. Robust DNA motifs can be self-assembled into objects, lattices and devices, using the information content inherent in the DNA molecules (or their analogs) themselves. Notable milestones include the self-assembly of DNA polyhedra, the self-assembly of 2D DNA periodic lattices, the self-assembly of high-resolution 3D DNA crystals, the development of clocked and autonomous cascade-like DNA walkers, the development of DNA origami, and the construction of 1D and 2D algorithmic assemblies. This project aims to combine several of these developments to produce robust aperiodic structures that will enable nano-scale construction of computational machinery. The goal of the project is to introduce a new paradigm in the self-assembly of nano-scale devices by DNA self-assembly: active (rather than passive) recursion-based assembly of aperiodic structures. The project will incorporate elements of DNA walkers into DNA origami-based tiles as signals that guide hierarchical active assembly of aperiodic arrays. The proposed hierarchical algorithmic assembly would be the first demonstration of recursion in molecular self-assembly that can be seen as a physical incarnation of programmed recursion. It is known that self-similar and fractal-like structures have advantages in material design, heat exchange and information processing, e.g., the very significant advances obtained by miniature fractal-like antennas. Consequently, the possibilities for self-similar arrangements at the nano-scale can be expected to advance further the design of materials and electronics, while decreasing the costs involved in their construction. The project is highly interdisciplinary, ranging from computer science to molecular design, from biochemistry to crystallography, physics and engineering. It directly supports training of a postdoctoral associate (a female Hispanic) and graduate students. The training that the postdoc and the students receive in doing this work will prepare them as unique interdisciplinary research scientists, trained researchers able to pursue studies that require broader scientific knowledge. The postdoctoral fellow will be trained to lead and coordinate a project of a fundamentally interdisciplinary nature. Through their teaching, the PIs impact a wider student body, and through writing textbooks they impact the wider society. The PIs are prominent members of the DNA-based nanoengineering community. Their contributions are well recognized in the field of nanoscale engineering, DNA computing and DNA nanotechnology, and as such the PIs are involved in the wider scientic organizations and events as both, lecturers and organizers. PI Seeman is frequently involved in science-art activities, and has just written an article on this topic for the new NSF journal Mosaic.
AF:小:合作研究:非周期性结构的活性DNA组装PI:N.C. Seeman,N.计算和信息处理科学正在迅速扩散,在建立学科,乍一看似乎无关。 例子包括通过生物信息学和算法分子组装领域的生物化学和生物学,或通过量子计算的物理学。 当前电子元件构造的自上而下的光刻方法可能遇到严重的障碍,因为小型化需要非常小尺寸的特征。 这种构造的另一种方法是分子尺度上的可编程自下而上组装。 自下而上组装最流行的基础是DNA自组装,因为DNA包含可以以各种方式控制组装的信息。近年来,各种实验室都在探索这种方法,但大约30年前,PI Seeman的实验室率先提出了这种方法。强大的DNA基序可以自组装成物体,晶格和设备,使用DNA分子(或其类似物)本身固有的信息内容。 值得注意的里程碑包括DNA多面体的自组装,2D DNA周期晶格的自组装,高分辨率3D DNA晶体的自组装,时钟和自主级联式DNA步行者的发展,DNA折纸的发展以及1D和2D算法组件的构建。 这个项目的目标是联合收割机的几个这些发展,以产生强大的非周期性结构,将使纳米级的计算机器的建设。 该项目的目标是通过DNA自组装在纳米级器件的自组装中引入一种新的范例:主动(而不是被动)基于递归的非周期性结构组装。该项目将把DNA步行者的元素整合到基于DNA折纸的瓦片中,作为引导非周期性阵列的分层主动组装的信号。所提出的分层算法组装将是分子自组装中递归的第一个演示,可以被视为编程递归的物理化身。众所周知,自相似和类分形结构在材料设计、热交换和信息处理方面具有优势,例如,微型分形天线所取得的重大进展。 因此,在纳米尺度上自相似排列的可能性有望进一步推进材料和电子器件的设计,同时降低其构建成本。该项目是高度跨学科的,从计算机科学到分子设计,从生物化学到晶体学,物理学和工程学。它直接支持博士后助理(一名西班牙裔女性)和研究生的培训。博士后和学生在做这项工作时接受的培训将使他们成为独特的跨学科研究科学家,训练有素的研究人员能够从事需要更广泛科学知识的研究。博士后研究员将接受培训,以领导和协调一个基本上跨学科性质的项目。通过他们的教学,PI影响更广泛的学生群体,并通过编写教科书,他们影响更广泛的社会。PI是基于DNA的纳米工程社区的杰出成员。他们的贡献在纳米工程,DNA计算和DNA纳米技术领域得到了广泛的认可,因此PI参与了更广泛的科学组织和活动,讲师和组织者。 PI Seeman经常参与科学艺术活动,并刚刚为新的NSF杂志Mosaic写了一篇关于这个主题的文章。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasa Jonoska其他文献
Natasa Jonoska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasa Jonoska', 18)}}的其他基金
DMS/NIGMS 2: Collaborative Research: Modeling R-Loop Formation and Topology Using Braids and Graphs Coupled with Single-Molecule Footprinting
DMS/NIGMS 2:协作研究:使用辫子和图与单分子足迹相结合的 R 环形成和拓扑建模
- 批准号:
2054321 - 财政年份:2021
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: FTE: Medium: Three Dimensional Algorithmic Assembly and Information Storage
合作研究:FTE:媒介:三维算法组装和信息存储
- 批准号:
2107267 - 财政年份:2021
- 资助金额:
$ 14.93万 - 项目类别:
Continuing Grant
International Conference: Developments in Language Theory 2020
国际会议:2020 年语言理论的发展
- 批准号:
1945852 - 财政年份:2019
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: Discrete and Topological Models for Template-Guided Genome Rearrangements
合作研究:模板引导基因组重排的离散拓扑模型
- 批准号:
1800443 - 财政年份:2018
- 资助金额:
$ 14.93万 - 项目类别:
Continuing Grant
DNA Computing and Molecular Programming
DNA 计算和分子编程
- 批准号:
1620729 - 财政年份:2016
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Small: Collaborative Research: Programmed Cyclic Molecular Dancing on 2D Origami Lattices
小:合作研究:二维折纸晶格上的程序化循环分子跳舞
- 批准号:
1526485 - 财政年份:2015
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Workshop on Discrete and Topological Models in Molecular Biology
分子生物学离散和拓扑模型研讨会
- 批准号:
1157242 - 财政年份:2012
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: RNA-guided DNA recombination through assembly graphs
合作研究:通过组装图进行 RNA 引导的 DNA 重组
- 批准号:
0900671 - 财政年份:2009
- 资助金额:
$ 14.93万 - 项目类别:
Continuing Grant
POWRE: Self Assembling Graphs by DNA
POWRE:DNA 自组装图
- 批准号:
0074808 - 财政年份:2000
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
- 批准号:
2232720 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326494 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234921 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326894 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
- 批准号:
2234920 - 财政年份:2023
- 资助金额:
$ 14.93万 - 项目类别:
Standard Grant