SHF: Small: Collaborative Research: VLSI Design Predictability Improvement By New Statistical Techniques in Timing Analysis, Delay ATPG, and Optimization

SHF:小型:协作研究:通过时序分析、延迟 ATPG 和优化中的新统计技术提高 VLSI 设计可预测性

基本信息

  • 批准号:
    1117975
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

One of the most critical challenges in todays nanoscale VLSI design is the lack of predictability in analysis and optimization. As VLSI technology continues scaling in the nanometer domain, VLSI systems are subject to increasingly significant parametric variations coming from not only the manufacturing process but also the system runtime environment. Increasingly significant parametric variations lead to increasingly significant variations in IC timing performance, power consumption, and other product metrics. Existing VLSI statistical analysis techniques cannot accurately and efficiently capture such variations; this greatly compromises design optimization and design convergence, affecting product quality and time-to market. In this work the PIs plan to develop techniques for signal probability-based statistical timing analysis (SPSTA), which would achieve accurate performance estimates for different inputs, rather than input-oblivious pessimistic delay bounds. In this project, the PIs propose to build on the foundation of SPSTA to enable a new, predictive and less-pessimistic VLSI implementation methodology. Core techniques will span VLSI statistical analysis, delay test ATPG, and optimization techniques that exploit improved predictability. Specifically, there are three thrust areas in this project, and it is expected that that these techniques will outperform existing alternative techniques. The outcome of this project is critical to the cost-effective continuation of semiconductor technology scaling (i.e., Moore's Law), and to maintaining growth of the semiconductor industry's economic engine in the coming years. The broader impacts of the proposed project can be further measured by a strong education program including curriculum development and research training which incorporate statistical VLSI analysis and optimization techniques into the computer engineering programs at the PIs? institutions, and into course infrastructure that is broadly and openly available to others online. Following their established practices of well over a decade, the PIs will broadly disseminate their research results by publication, industry collaboration, and online posting of open-source software. This project will also allow the PIs to broaden participation of students from under-represented groups based on the minority institute status of UT San Antonio; it will help educational initiatives that are aimed at preparing the San Antonio regional economy to transform into a technology-oriented one.
当今纳米级 VLSI 设计中最关键的挑战之一是分析和优化缺乏可预测性。随着超大规模集成电路技术在纳米领域的不断扩展,超大规模集成电路系统受到越来越大的参数变化的影响,这些参数变化不仅来自制造过程,还来自系统运行时环境。越来越显着的参数变化会导致 IC 时序性能、功耗和其他产品指标发生越来越显着的变化。现有的VLSI统计分析技术无法准确有效地捕获此类变化;这极大地影响了设计优化和设计融合,影响了产品质量和上市时间。在这项工作中,PI 计划开发基于信号概率的统计时序分析 (SPSTA) 技术,该技术将实现对不同输入的准确性能估计,而不是忽略输入的悲观延迟界限。在该项目中,PI 建议在 SPSTA 的基础上构建一种新的、可预测的且不太悲观的 VLSI 实施方法。核心技术将涵盖 VLSI 统计分析、延迟测试 ATPG 以及利用改进的可预测性的优化技术。具体来说,该项目有三个重点领域,预计这些技术将优于现有的替代技术。该项目的成果对于半导体技术扩展(即摩尔定律)的成本效益持续以及维持未来几年半导体行业经济引擎的增长至关重要。拟议项目的更广泛影响可以通过强大的教育计划进一步衡量,包括课程开发和研究培训,将统计 VLSI 分析和优化技术纳入 PI 的计算机工程计划?机构,以及可供其他人在线广泛公开使用的课程基础设施。遵循十多年来的既定做法,PI 将通过出版、行业合作和在线发布开源软件来广泛传播他们的研究成果。该项目还将允许 PI 根据 UT 圣安东尼奥分校的少数族裔学院地位,扩大来自代表性不足群体的学生的参与;它将有助于旨在帮助圣安东尼奥地区经济转型为技术导向型经济的教育举措。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bao Liu其他文献

The roles of graphene in advanced Li-ion hybrid supercapacitors
石墨烯在先进锂离子混合超级电容器中的作用
  • DOI:
    10.1016/j.jechem.2017.11.020
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    13.1
  • 作者:
    Junwei Lang;Xu Zhang;Bao Liu;Rutao Wang;Jiangtao Chen;Xingbin Yan
  • 通讯作者:
    Xingbin Yan
FeSn2/defective onion-like carbon core-shell structured nanocapsules for high-frequency microwave absorption
FeSn2/缺陷洋葱状碳核壳结构高频微波吸收纳米胶囊
  • DOI:
    10.1016/j.jallcom.2016.11.167
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    D;an Han;Siu Wing Or;Xiaorui Dong;Bao Liu
  • 通讯作者:
    Bao Liu
One produced three: A capacitor-battery integration strategy in a dual-carbon device
一生三:双碳器件中的电容器-电池集成策略
  • DOI:
    10.1016/j.ensm.2020.09.019
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    20.4
  • 作者:
    Ruilin Hou;Qingyun Dou;Pan Zhao;Lingyang Liu;Bao Liu;Hongzhang Zhang;Xingbin Yan
  • 通讯作者:
    Xingbin Yan
Robust differential asynchronous nanoelectronic circuits
稳健的差分异步纳米电子电路
A Mild and Efficient Approach for the Reduction of Graphene Oxide
一种温和有效的氧化石墨烯还原方法
  • DOI:
    10.4028/www.scientific.net/amr.652-654.206
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Wang;C. Han;Bao Liu;D. Zhao;Dongfang Zhao;L. Sun
  • 通讯作者:
    L. Sun

Bao Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326494
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326894
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234920
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了